Compliance mismatch and compressive wall stresses drive anomalous remodelling of pulmonary trunks reinforced with Dacron grafts.

Abstract:

:Synthetic grafts are often satisfactory employed in cardiac and vascular surgery, including expanded poly(ethylene terephthalate) or expanded poly(tetrafluoroethylene). However, accumulating evidences suggest the emergence of worrisome issues concerning the long-term fate of prosthetic grafts as large vessel replacement. Disadvantages related to the use of synthetic grafts can be traced in their inability of mimicking the elasto-mechanical characteristics of the native vascular tissue, local suture overstress leading to several prosthesis-related complications and retrograde deleterious effects on valve competence, cardiac function and perfusion. Motivated by this, in the present work it is analyzed - by means of both elemental biomechanical paradigms and more accurate in silico Finite Element simulations - the physical interaction among aorta, autograft and widely adopted synthetic (Dacron) prostheses utilized in transposition of pulmonary artery, highlighting the crucial role played by somehow unexpected stress fields kindled in the vessel walls and around suture regions, which could be traced as prodromal to the triggering of anomalous remodelling processes and alterations of needed surgical outcomes. Theoretical results are finally compared with histological and surgical data related to a significant experimental animal campaign conducted by performing pulmonary artery transpositions in 30 two-month old growing lambs, followed up during growth for six months. The in vivo observations demonstrate the effectiveness of the proposed biomechanical hypothesis and open the way for possible engineering-guided strategies to support and optimize surgical procedures.

authors

Nappi F,Carotenuto AR,Cutolo A,Fouret P,Acar C,Chachques JC,Fraldi M

doi

10.1016/j.jmbbm.2016.06.023

subject

Has Abstract

pub_date

2016-10-01 00:00:00

pages

287-302

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(16)30199-0

journal_volume

63

pub_type

杂志文章
  • Evaluation of four surface coating treatments for resin to zirconia bonding.

    abstract:OBJECTIVES:To compare the effects of four surface coating methods on resin to zirconia shear bond strength. MATERIAL AND METHODS:Eighty pre-sintered zirconia discs were prepared and randomly divided into five study groups according to the corresponding methods of surface treatments as follows: group C (control group, ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.12.011

    authors: Liu D,Pow EHN,Tsoi JK,Matinlinna JP

    更新日期:2014-04-01 00:00:00

  • Hyper-frequency viscoelastic spectroscopy of biomaterials.

    abstract::With the emergence of new biomaterials and elastography imaging techniques, there is a need for innovative instruments dedicated to viscoelasticity measurements. In this work, we introduce a novel hyper-frequency viscoelastic spectroscopy (HFVS) technique dedicated to characterize soft media subjected to mid-to-very-h...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.03.020

    authors: Hadj Henni A,Schmitt C,Tremblay MÉ,Hamdine M,Heuzey MC,Carreau P,Cloutier G

    更新日期:2011-10-01 00:00:00

  • Osteogenesis enhancement of silk fibroin/ α-TCP cement by N-acetyl cysteine through Wnt/β-catenin signaling pathway in vivo and vitro.

    abstract::High brittleness and lack osteogenesis are two major limitations of calcium phosphate cement (CPC) in application in bone defect reconstruction. Here we prepared a composite calcium phosphate cement by mixing N-acetyl cysteine loaded silk fibroin solution with α-tricalcium phosphate. In vitro cytology experiment revea...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103451

    authors: Feng T,Niu J,Pi B,Lu Y,Wang J,Zhang W,Li B,Yang H,Zhu X

    更新日期:2020-01-01 00:00:00

  • A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics.

    abstract::Hygiene products such as incontinence pads bring nonwoven fabrics into contact with users' skin, which can cause damage in various ways, including the nonwoven abrading the skin by friction. The aim of the work described here was to develop and use methods for understanding the origin of friction between nonwoven fabr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.04.024

    authors: Cottenden DJ,Cottenden AM

    更新日期:2013-12-01 00:00:00

  • New regime in the mechanical behavior of skin: strain-softening occurring before strain-hardening.

    abstract::We report linear and non-linear shear tests on rat skin, evidencing a strain-softening regime, from 1% to 50% strain, followed by a strong strain-hardening regime, leading to a 'deck chair-shaped' stress-strain curve. The strain-softening regime was never reported as such in the literature, possibly mistaken for the l...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.12.021

    authors: Nicolle S,Decorps J,Fromy B,Palierne JF

    更新日期:2017-05-01 00:00:00

  • Through-thickness stress relaxation in bacterial cellulose hydrogel.

    abstract::Biological hydrogels, e.g. bacterial cellulose (BC) hydrogel, attracted increasing interest in recent decades since they show a good potential for biomedical engineering as replacements of real tissues thanks mainly to their good biocompatibility and fibrous structure. To select potential candidates for such applicati...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.021

    authors: Gao X,Kuśmierczyk P,Shi Z,Liu C,Yang G,Sevostianov I,Silberschmidt VV

    更新日期:2016-06-01 00:00:00

  • A projection method to extract biological membrane models from 3D material models.

    abstract::This paper presents a projection method for deriving membrane models from the corresponding three-dimensional material models. As a particular example the anisotropic Holzapfel-Gasser-Ogden model is considered. The projection procedure is based on the kinematical and constitutive assumptions of a general membrane theo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.001

    authors: Roohbakhshan F,Duong TX,Sauer RA

    更新日期:2016-05-01 00:00:00

  • Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    abstract::This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentrati...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.04.002

    authors: Hammouda IM

    更新日期:2009-01-01 00:00:00

  • Fatigue life of bovine meniscus under longitudinal and transverse tensile loading.

    abstract::The knee meniscus is composed of a fibrous extracellular matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loa...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.12.020

    authors: Creechley JJ,Krentz ME,Lujan TJ

    更新日期:2017-05-01 00:00:00

  • Environmental fatigue of superelastic NiTi wire with two surface finishes.

    abstract::Surface finish of NiTi is widely perceived to affect its biocompatibility and corrosion fatigue performance. The aim of this work was to find out, whether a carefully engineered surface oxide shows any beneficial effect over electropolished surface on the fatigue performance of superelastic NiTi wire mechanically cycl...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104028

    authors: Racek J,Šittner P

    更新日期:2020-11-01 00:00:00

  • Development of novel zirconia implant's materials gradated design with improved bioactive surface.

    abstract::Zirconia implants are becoming a preference choice for different applications such as knee, dental, among others. In order to improve osseointegration, implant's surfaces are usually coated with bioactive materials like hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) that are very similar to the calcium pho...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.022

    authors: Faria D,Pires JM,Boccaccini AR,Carvalho O,Silva FS,Mesquita-Guimarães J

    更新日期:2019-06-01 00:00:00

  • RETRACTED: Mechanical properties and phase transition of biomedical titanium alloy strips with initial quasi-single phase state under high-energy electropulses.

    abstract::This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The authors have reused figures and text that have already appeared in their previous articles. Figure 4 duplicat...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,收录出版

    doi:10.1016/j.jmbbm.2014.11.009

    authors: Ye X,Tse ZT,Tang G,Song G

    更新日期:2015-02-01 00:00:00

  • Mechanical performance, corrosion and tribological evaluation of a Co-Cr-Mo alloy processed by MIM for biomedical applications.

    abstract::In this study, the processing parameters mechanical performance, corrosion and tribological evaluation of a low carbon content Co-Cr-Mo alloy are discussed. The production of parts using the Metal Injection Moulding (MIM) process is optimized, specifically concerning the rheological analysis of the prepared feedstocks...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103706

    authors: Herranz G,Berges C,Naranjo JA,García C,Garrido I

    更新日期:2020-05-01 00:00:00

  • Cervical fusion cage computationally optimized with porous architected Titanium for minimized subsidence.

    abstract::Anterior cervical discectomy with fusion is a common surgical treatment that can relieve patients suffering from cervical spondylosis. This surgery is most commonly performed with the use of a cervical cage. One serious complication of the fusion cages commercially available in the market is subsidence of the cage wit...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.05.040

    authors: Moussa A,Tanzer M,Pasini D

    更新日期:2018-09-01 00:00:00

  • Biomechanical and histologic evaluation of two application forms of surgical glue for mesh fixation to the abdominal wall.

    abstract::The use of an adhesive for mesh fixation in hernia repair reduces chronic pain and minimizes tissue damage in the patient. This study was designed to assess the adhesive properties of a medium-chain (n-butyl) cyanoacrylate glue applied as drops or as a spray in a biomechanical and histologic study. Both forms of glue ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.08.008

    authors: Ortillés Á,Pascual G,Peña E,Rodríguez M,Pérez-Köhler B,Mesa-Ciller C,Calvo B,Bellón JM

    更新日期:2017-11-01 00:00:00

  • Understanding hydration effects on mechanical and impacting properties of turtle shell.

    abstract::Study of the properties of natural biomaterials provides a reliable experimental basis for the design of biomimetic materials. The mechanical properties and impact wear behaviors of turtle shell with different soaking time were investigated on a micro-amplitude impact wear tester. The damage behavior of turtle shells ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.007

    authors: Zhang X,Cai ZB,Li W,Zhu MH

    更新日期:2018-02-01 00:00:00

  • Blast effect on the lower extremities and its mitigation: a computational study.

    abstract::A series of computational studies were performed to investigate the response of the lower extremities of mounted soldiers under landmine detonation. A numerical human body model newly developed at Wayne State University was used to simulate two types of experimental studies and the model predictions were validated aga...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.07.010

    authors: Dong L,Zhu F,Jin X,Suresh M,Jiang B,Sevagan G,Cai Y,Li G,Yang KH

    更新日期:2013-12-01 00:00:00

  • Two-body wear of dental restorative materials.

    abstract:AIM:The aim of this in vitro study was to determine the two-body wear resistance of modern direct dental restorative materials. METHODS:Eight standardized specimens were prepared from 14 dental restorative materials (nano-, micro-, hybrid-, macrofilled composites; compomer, silorane, ormocer); a veneering composite (S...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.06.001

    authors: Hahnel S,Schultz S,Trempler C,Ach B,Handel G,Rosentritt M

    更新日期:2011-04-01 00:00:00

  • Effects of homogenization technique and introduction of interfaces in a multiscale approach to predict the elastic properties of arthropod cuticle.

    abstract::In this paper the mechanical response of the arthropod cuticle is evaluated by means of a multiscale approach including interface effects. The cuticle's elastic behavior is modeled at the nano and the micro scales by mean-field homogenization techniques. With respect to the work of Nikolov et al. (2011), the idea has ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.04.003

    authors: Lhadi S,Ahzi S,Rémond Y,Nikolov S,Fabritius H

    更新日期:2013-07-01 00:00:00

  • An adaptive finite element simulation of fretting wear damage at the head-neck taper junction of total hip replacement: The role of taper angle mismatch.

    abstract::An adaptive finite element simulation was developed to predict fretting wear in a head-neck taper junction of hip joint implant through a two dimensional (2D) model and based on the Archard wear equation. This model represents the most critical section of the head-neck junction which was identified from a 3D model of ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.003

    authors: Fallahnezhad K,Oskouei RH,Badnava H,Taylor M

    更新日期:2017-11-01 00:00:00

  • Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    abstract::Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior....

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.026

    authors: Varga P,Schwiedrzik J,Zysset PK,Fliri-Hofmann L,Widmer D,Gueorguiev B,Blauth M,Windolf M

    更新日期:2016-04-01 00:00:00

  • Profile of a 10-MDP-based universal adhesive system associated with chlorhexidine: Dentin bond strength and in situ zymography performance.

    abstract::The incorporation of functional monomers and proteolytic inhibitors into adhesive systems have shown to be promising strategies to improve the longevity of adhesive restorations. The aim of this study was to evaluate the long-term bonding performance and anti-gelatinolytic effect of a 10-MDP-based universal adhesive s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103925

    authors: Giacomini MC,Scaffa PMC,Gonçalves RS,Zabeu GS,Vidal CMP,Carrilho MRO,Honório HM,Wang L

    更新日期:2020-10-01 00:00:00

  • Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope.

    abstract::The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.11.010

    authors: Zhou ZL,Ngan AH,Tang B,Wang AX

    更新日期:2012-04-01 00:00:00

  • The effect of aging on the mechanical behaviour of cuticle in the locust Schistocerca gregaria.

    abstract::Despite some previous work on the morphology and mechanical properties of parts of the insect exoskeleton, there is very little known about how these properties change over time during the life of the insect. We examined the hind tibia of the adult desert locust (Schistocerca gregaria) as a function of time up to 63 d...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.02.008

    authors: Parle E,Taylor D

    更新日期:2017-04-01 00:00:00

  • Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.

    abstract::Tissue engineering is a field which aims to regenerate damaged tissues by enhancing tissue growth through the porous architecture of the scaffolds which is desired to mimic the human cancellous bone. Mg-based scaffolds are gaining importance in the field of tissue engineering owing to its potential application as a bi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.010

    authors: Singh S,Vashisth P,Shrivastav A,Bhatnagar N

    更新日期:2019-06-01 00:00:00

  • Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.

    abstract::Severe plastic deformation (SPD) has recently been advanced as the main process for fabricating bulk ultrafine grained or nanocrystalline metallic materials, which present much higher strength and better bio-compatibility than coarse-grained counterparts. Medical devices, such as aneurysm clips and dental implants, re...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.02.002

    authors: Um HY,Park BH,Ahn DH,Abd El Aal MI,Park J,Kim HS

    更新日期:2017-04-01 00:00:00

  • Articular cartilage surface rupture during compression: investigating the effects of tissue hydration in relation to matrix health.

    abstract::This study aimed at investigating articular cartilage rupture by investigating the response of healthy and degenerate cartilage through altering the osmotic swelling environment of surface-intact, cartilage-on-bone specimens. The osmotic environment in healthy and degenerate bovine cartilage was varied by soaking tiss...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.018

    authors: Fick JM,Espino DM

    更新日期:2011-10-01 00:00:00

  • A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.

    abstract::Cosserat models of cancellous bone are constructed, relying on micromechanical approaches in order to investigate microstructure-related scale effects on the macroscopic properties of bone. The derivation of the effective mechanical properties of cancellous bone considered as a cellular solid modeled as two-dimensiona...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.07.012

    authors: Goda I,Assidi M,Belouettar S,Ganghoffer JF

    更新日期:2012-12-01 00:00:00

  • Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.

    abstract::Processing scaffolds that mimic the extracellular matrix (ECM) of natural bone in structure and chemical composition is a potential promising option for engineering physiologically functional bone tissue. In this article, we report a novel method, by combining electrospinning and mineralization, to process a series of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.01.007

    authors: Liao S,Murugan R,Chan CK,Ramakrishna S

    更新日期:2008-07-01 00:00:00

  • Fracture resistance of CAD/CAM occlusal veneers: A systematic review of laboratory studies.

    abstract:OBJECTIVE:The purpose of this systematic review was to summarize scientific evidence that evaluates in vitro fracture and fatigue strength of occlusal veneers in different thicknesses, CAD/CAM materials, and under different aging methodologies. MATERIALS AND METHODS:An electronic search of 3 English databases (The Nat...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,评审

    doi:10.1016/j.jmbbm.2020.103948

    authors: Albelasy EH,Hamama HH,Tsoi JKH,Mahmoud SH

    更新日期:2020-10-01 00:00:00