An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data.

Abstract:

:For large-scale network simulations, it is often desirable to have computationally tractable, yet in a defined sense still physiologically valid neuron models. In particular, these models should be able to reproduce physiological measurements, ideally in a predictive sense, and under different input regimes in which neurons may operate in vivo. Here we present an approach to parameter estimation for a simple spiking neuron model mainly based on standard f-I curves obtained from in vitro recordings. Such recordings are routinely obtained in standard protocols and assess a neuron's response under a wide range of mean-input currents. Our fitting procedure makes use of closed-form expressions for the firing rate derived from an approximation to the adaptive exponential integrate-and-fire (AdEx) model. The resulting fitting process is simple and about two orders of magnitude faster compared to methods based on numerical integration of the differential equations. We probe this method on different cell types recorded from rodent prefrontal cortex. After fitting to the f-I current-clamp data, the model cells are tested on completely different sets of recordings obtained by fluctuating ("in vivo-like") input currents. For a wide range of different input regimes, cell types, and cortical layers, the model could predict spike times on these test traces quite accurately within the bounds of physiological reliability, although no information from these distinct test sets was used for model fitting. Further analyses delineated some of the empirical factors constraining model fitting and the model's generalization performance. An even simpler adaptive LIF neuron was also examined in this context. Hence, we have developed a "high-throughput" model fitting procedure which is simple and fast, with good prediction performance, and which relies only on firing rate information and standard physiological data widely and easily available.

journal_name

Front Comput Neurosci

authors

Hertäg L,Hass J,Golovko T,Durstewitz D

doi

10.3389/fncom.2012.00062

subject

Has Abstract

pub_date

2012-09-06 00:00:00

pages

62

issn

1662-5188

journal_volume

6

pub_type

杂志文章
  • A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition.

    abstract::A classic problem in neuroscience is how temporal sequences (TSs) can be recognized. This problem is exemplified in the olfactory system, where an odor is defined by the TS of olfactory bulb (OB) output that occurs during a sniff. This sequence is discrete because the output is subdivided by gamma frequency oscillatio...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00108

    authors: Sanders H,Kolterman BE,Shusterman R,Rinberg D,Koulakov A,Lisman J

    更新日期:2014-09-17 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00060

    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • Topological View of Flows Inside the BOLD Spontaneous Activity of the Human Brain.

    abstract::Spatio-temporal brain activities with variable delay detectable in resting-state functional magnetic resonance imaging (rs-fMRI) give rise to highly reproducible structures, termed cortical lag threads, that propagate from one brain region to another. Using a computational topology of data approach, we found that pers...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00034

    authors: Don APH,Peters JF,Ramanna S,Tozzi A

    更新日期:2020-04-22 00:00:00

  • A Neuronal Network Model for Pitch Selectivity and Representation.

    abstract::Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is de...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00057

    authors: Huang C,Rinzel J

    更新日期:2016-06-16 00:00:00

  • Nine criteria for a measure of scientific output.

    abstract::Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evalua...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00048

    authors: Kreiman G,Maunsell JH

    更新日期:2011-11-10 00:00:00

  • Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy.

    abstract::In temporal lobe epilepsy (TLE), the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal d...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00061

    authors: Zhang L,Fan D,Wang Q

    更新日期:2017-07-11 00:00:00

  • Model selection for the extraction of movement primitives.

    abstract::A wide range of blind source separation methods have been used in motor control research for the extraction of movement primitives from EMG and kinematic data. Popular examples are principal component analysis (PCA), independent component analysis (ICA), anechoic demixing, and the time-varying synergy model (d'Avella ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00185

    authors: Endres DM,Chiovetto E,Giese MA

    更新日期:2013-12-20 00:00:00

  • Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model.

    abstract::A vast amount of information about the external world continuously flows into the brain, whereas its capacity to process such information is limited. Attention enables the brain to allocate its resources of information processing to selected sensory inputs for reducing its computational load, and effects of attention ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00031

    authors: Wagatsuma N,Potjans TC,Diesmann M,Fukai T

    更新日期:2011-07-08 00:00:00

  • Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex.

    abstract::A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such mode...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00005

    authors: Thwaites A,Nimmo-Smith I,Fonteneau E,Patterson RD,Buttery P,Marslen-Wilson WD

    更新日期:2015-02-10 00:00:00

  • Short-Term Facilitation may Stabilize Parametric Working Memory Trace.

    abstract::Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory (WM), but require fine tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefor...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00040

    authors: Itskov V,Hansel D,Tsodyks M

    更新日期:2011-10-24 00:00:00

  • Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface.

    abstract::Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task....

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00130

    authors: Manor R,Mishali L,Geva AB

    更新日期:2016-12-20 00:00:00

  • Learning view invariant recognition with partially occluded objects.

    abstract::This paper investigates how a neural network model of the ventral visual pathway, VisNet, can form separate view invariant representations of a number of objects seen rotating together. In particular, in the current work one of the rotating objects is always partially occluded by the other objects present during train...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00048

    authors: Tromans JM,Higgins I,Stringer SM

    更新日期:2012-07-25 00:00:00

  • Stochastic Resonance Based Visual Perception Using Spiking Neural Networks.

    abstract::Our aim is to propose an efficient algorithm for enhancing the contrast of dark images based on the principle of stochastic resonance in a global feedback spiking network of integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the dependence of the peak signal-to-noise ratio on the sp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00024

    authors: Fu Y,Kang Y,Chen G

    更新日期:2020-05-15 00:00:00

  • Invariant object recognition based on extended fragments.

    abstract::Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational stu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00056

    authors: Bart E,Hegdé J

    更新日期:2012-08-24 00:00:00

  • Inferring single neuron properties in conductance based balanced networks.

    abstract::Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse c...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00041

    authors: Pool RR,Mato G

    更新日期:2011-10-12 00:00:00

  • Brain Network Analysis and Classification Based on Convolutional Neural Network.

    abstract::Background: Convolution neural networks (CNN) is increasingly used in computer science and finds more and more applications in different fields. However, analyzing brain network with CNN is not trivial, due to the non-Euclidean characteristics of brain network built by graph theory. Method: To address this problem, we...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00095

    authors: Meng L,Xiang J

    更新日期:2018-12-10 00:00:00

  • Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    abstract::In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activate...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00012

    authors: Xu K,Maidana JP,Caviedes M,Quero D,Aguirre P,Orio P

    更新日期:2017-03-10 00:00:00

  • Structural Plasticity Denoises Responses and Improves Learning Speed.

    abstract::Despite an abundance of computational models for learning of synaptic weights, there has been relatively little research on structural plasticity, i.e., the creation and elimination of synapses. Especially, it is not clear how structural plasticity works in concert with spike-timing-dependent plasticity (STDP) and wha...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00093

    authors: Spiess R,George R,Cook M,Diehl PU

    更新日期:2016-09-08 00:00:00

  • A Role for Electrotonic Coupling Between Cortical Pyramidal Cells.

    abstract::Many brain regions communicate information through synchronized network activity. Electrical coupling among the dendrites of interneurons in the cortex has been implicated in forming and sustaining such activity in the cortex. Evidence for the existence of electrical coupling among cortical pyramidal cells, however, h...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00033

    authors: Crodelle J,Zhou D,Kovačič G,Cai D

    更新日期:2019-05-28 00:00:00

  • Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits.

    abstract::Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of sho...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00075

    authors: Costa RP,Sjöström PJ,van Rossum MC

    更新日期:2013-06-06 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00021

    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.

    abstract::Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention mod...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00064

    authors: Fu H,Niu Z,Zhang C,Ma J,Chen J

    更新日期:2016-07-14 00:00:00

  • Inhibition potentiates the synchronizing action of electrical synapses.

    abstract::In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the gamma range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depend...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.008.2007

    authors: Pfeuty B,Golomb D,Mato G,Hansel D

    更新日期:2007-11-02 00:00:00

  • Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures.

    abstract::The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In parti...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00059

    authors: Fan D,Duan L,Wang Q,Luan G

    更新日期:2017-07-07 00:00:00

  • A three-dimensional mathematical model for the signal propagation on a neuron's membrane.

    abstract::In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations. When the neuron's intra- and extracel...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00094

    authors: Xylouris K,Wittum G

    更新日期:2015-07-17 00:00:00

  • Optimization of Real-Time EEG Artifact Removal and Emotion Estimation for Human-Robot Interaction Applications.

    abstract::Affective human-robot interaction requires lightweight software and cheap wearable devices that could further this field. However, the estimation of emotions in real-time poses a problem that has not yet been optimized. An optimization is proposed for the emotion estimation methodology including artifact removal, feat...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00080

    authors: Val-Calvo M,Álvarez-Sánchez JR,Ferrández-Vicente JM,Fernández E

    更新日期:2019-11-26 00:00:00

  • Probabilistic Circuits for Autonomous Learning: A Simulation Study.

    abstract::Modern machine learning is based on powerful algorithms running on digital computing platforms and there is great interest in accelerating the learning process and making it more energy efficient. In this paper we present a fully autonomous probabilistic circuit for fast and efficient learning that makes no use of dig...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00014

    authors: Kaiser J,Faria R,Camsari KY,Datta S

    更新日期:2020-02-25 00:00:00

  • A Spiking Neural Model of HT3D for Corner Detection.

    abstract::Obtaining good quality image features is of remarkable importance for most computer vision tasks. It has been demonstrated that the first layers of the human visual cortex are devoted to feature detection. The need for these features has made line, segment, and corner detection one of the most studied topics in comput...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00037

    authors: Bachiller-Burgos P,Manso LJ,Bustos P

    更新日期:2018-06-01 00:00:00

  • Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution.

    abstract::Internal coordination models hold that early nervous systems evolved in the first place to coordinate internal activity at a multicellular level, most notably the use of multicellular contractility as an effector for motility. A recent example of such a model, the skin brain thesis, suggests that excitable epithelia u...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00110

    authors: de Wiljes OO,van Elburg RA,Biehl M,Keijzer FA

    更新日期:2015-09-15 00:00:00