Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures.

Abstract:

:The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC) to inhibitory neuronal population (IN) which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX). Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD) in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic seizures and the modified thalamocortical model may provide a guide for future efforts to mechanistically link feedforward pathways in the pathogenesis of epileptic seizures.

journal_name

Front Comput Neurosci

authors

Fan D,Duan L,Wang Q,Luan G

doi

10.3389/fncom.2017.00059

subject

Has Abstract

pub_date

2017-07-07 00:00:00

pages

59

issn

1662-5188

journal_volume

11

pub_type

杂志文章
  • Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder.

    abstract::The human brain is a complex system composed by several large scale intrinsic networks with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous neural activity of these networks. We propose to characterize ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00064

    authors: Qi S,Gao Q,Shen J,Teng Y,Xie X,Sun Y,Wu J

    更新日期:2018-08-03 00:00:00

  • Emergence of Relaxation Oscillations in Neurons Interacting With Non-stationary Ambient GABA.

    abstract::Dynamics of a homogeneous neural population interacting with active extracellular medium were considered. The corresponding mathematical model was tuned specifically to describe the behavior of interneurons with tonic GABA conductance under the action of non-stationary ambient GABA. The feedback provided by the GABA m...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00019

    authors: Adamchik DA,Matrosov VV,Kazantsev VB

    更新日期:2018-04-05 00:00:00

  • Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite.

    abstract::Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interac...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00110

    authors: Kim H,Heckman CJ

    更新日期:2014-09-09 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00021

    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Reducing the Effect of Spurious Phase Variations in Neural Oscillatory Signals.

    abstract::The phase-reset model of oscillatory EEG activity has received a lot of attention in the last decades for decoding different cognitive processes. Based on this model, the ERPs are assumed to be generated as a result of phase reorganization in ongoing EEG. Alignment of the phase of neuronal activities can be observed w...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00082

    authors: Mortezapouraghdam Z,Corona-Strauss FI,Takahashi K,Strauss DJ

    更新日期:2018-10-08 00:00:00

  • Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency.

    abstract::This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy co...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00010

    authors: Han F,Wang Z,Fan H

    更新日期:2017-02-21 00:00:00

  • A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate.

    abstract::Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00092

    authors: Lenk K,Satuvuori E,Lallouette J,Ladrón-de-Guevara A,Berry H,Hyttinen JAK

    更新日期:2020-01-22 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00060

    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity.

    abstract::Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00156

    authors: Vasquez JC,Houweling AR,Tiesinga P

    更新日期:2013-11-07 00:00:00

  • Estimating neuronal connectivity from axonal and dendritic density fields.

    abstract::Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00160

    authors: van Pelt J,van Ooyen A

    更新日期:2013-11-25 00:00:00

  • Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data.

    abstract::Automatic segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance Imaging (MRI) images is essential for clinical assessment and treatment planning of MS. Recent years have seen an increasing use of Convolutional Neural Networks (CNNs) for this task. Although these methods provide accurate segmentation,...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00019

    authors: Ackaouy A,Courty N,Vallée E,Commowick O,Barillot C,Galassi F

    更新日期:2020-03-09 00:00:00

  • Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.

    abstract::A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00141

    authors: Potjans W,Morrison A,Diesmann M

    更新日期:2010-11-23 00:00:00

  • Learning Generative State Space Models for Active Inference.

    abstract::In this paper we investigate the active inference framework as a means to enable autonomous behavior in artificial agents. Active inference is a theoretical framework underpinning the way organisms act and observe in the real world. In active inference, agents act in order to minimize their so called free energy, or p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.574372

    authors: Çatal O,Wauthier S,De Boom C,Verbelen T,Dhoedt B

    更新日期:2020-11-16 00:00:00

  • Cancer Risk Analysis Based on Improved Probabilistic Neural Network.

    abstract::The problem of cancer risk analysis is of great importance to health-service providers and medical researchers. In this study, we propose a novel Artificial Neural Network (ANN) algorithm based on the probabilistic framework, which aims to investigate patient patterns associated with their disease development. Compare...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00058

    authors: Yang C,Yang J,Liu Y,Geng X

    更新日期:2020-07-21 00:00:00

  • The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake.

    abstract::Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00103

    authors: Angleys H,Jespersen SN,Østergaard L

    更新日期:2016-10-13 00:00:00

  • Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    abstract::Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00062

    authors: Yi GS,Wang J,Tsang KM,Wei XL,Deng B

    更新日期:2015-05-27 00:00:00

  • Information diversity in structure and dynamics of simulated neuronal networks.

    abstract::Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neurona...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00026

    authors: Mäki-Marttunen T,Aćimović J,Nykter M,Kesseli J,Ruohonen K,Yli-Harja O,Linne ML

    更新日期:2011-06-01 00:00:00

  • Invariant object recognition based on extended fragments.

    abstract::Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational stu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00056

    authors: Bart E,Hegdé J

    更新日期:2012-08-24 00:00:00

  • Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation.

    abstract::Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algori...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00017

    authors: Estienne T,Lerousseau M,Vakalopoulou M,Alvarez Andres E,Battistella E,Carré A,Chandra S,Christodoulidis S,Sahasrabudhe M,Sun R,Robert C,Talbot H,Paragios N,Deutsch E

    更新日期:2020-03-20 00:00:00

  • Synaptic bouton properties are tuned to best fit the prevailing firing pattern.

    abstract::The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junc...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00101

    authors: Knodel MM,Geiger R,Ge L,Bucher D,Grillo A,Wittum G,Schuster CM,Queisser G

    更新日期:2014-09-09 00:00:00

  • Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

    abstract::The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior oli...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00097

    authors: Luque NR,Garrido JA,Carrillo RR,D'Angelo E,Ros E

    更新日期:2014-08-15 00:00:00

  • MACOP modular architecture with control primitives.

    abstract::Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00099

    authors: Waegeman T,Hermans M,Schrauwen B

    更新日期:2013-07-23 00:00:00

  • Structure learning and the Occam's razor principle: a new view of human function acquisition.

    abstract::We often encounter pairs of variables in the world whose mutual relationship can be described by a function. After training, human responses closely correspond to these functional relationships. Here we study how humans predict unobserved segments of a function that they have been trained on and we compare how human p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00121

    authors: Narain D,Smeets JB,Mamassian P,Brenner E,van Beers RJ

    更新日期:2014-09-30 00:00:00

  • Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    abstract::In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activate...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00012

    authors: Xu K,Maidana JP,Caviedes M,Quero D,Aguirre P,Orio P

    更新日期:2017-03-10 00:00:00

  • Classification of EEG Signals Based on Pattern Recognition Approach.

    abstract::Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00103

    authors: Amin HU,Mumtaz W,Subhani AR,Saad MNM,Malik AS

    更新日期:2017-11-21 00:00:00

  • Inhibition potentiates the synchronizing action of electrical synapses.

    abstract::In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the gamma range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depend...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.008.2007

    authors: Pfeuty B,Golomb D,Mato G,Hansel D

    更新日期:2007-11-02 00:00:00

  • Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity.

    abstract::Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00044

    authors: Zeitler M,Tass PA

    更新日期:2016-05-17 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Sex Differences in Fiber Connection between the Striatum and Subcortical and Cortical Regions.

    abstract::The striatum is an important subcortical structure with extensive connections to other regions of the brain. These connections are believed to play important roles in behaviors such as reward-related processes and impulse control, which show significant sex differences. However, little is known about sex differences i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00100

    authors: Lei X,Han Z,Chen C,Bai L,Xue G,Dong Q

    更新日期:2016-09-23 00:00:00

  • Learning modular policies for robotics.

    abstract::A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. Whil...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00062

    authors: Neumann G,Daniel C,Paraschos A,Kupcsik A,Peters J

    更新日期:2014-06-11 00:00:00