Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder.

Abstract:

:The human brain is a complex system composed by several large scale intrinsic networks with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous neural activity of these networks. We propose to characterize these networks by applying the multiple frequency bands analysis (MFBA) to the LFO time courses (TCs) resulted from the group independent component analysis (ICA). Specifically, seven networks, including the default model network (DMN), dorsal attention network (DAN), control executive network (CEN), salience network, sensorimotor network, visual network and limbic network, are identified. After the power spectral density (PSD) analysis, the amplitude of low frequency fluctuation (ALFF) and the fractional amplitude of low frequency fluctuation (fALFF) is determined in three bands: <0.1 Hz; slow-5; and slow-4. Moreover, the MFBA method is applied to reveal the frequency-dependent alternations of fALFF for seven networks in schizotypal personality disorder (SPD). It is found that seven networks can be divided into three categories: the advanced cognitive networks, primary sensorimotor networks and limbic networks, and their fALFF successively decreases in both slow-4 and slow-5 bands. Comparing to normal control group, the fALFF of DMN, DAN and CEN in SPD tends to be higher in slow-5 band, but lower in slow-4. Higher fALFF of sensorimotor and visual networks in slow-5, higher fALFF of limbic network in both bands have been observed for SPD group. The results of ALFF are consistent with those of fALFF. The proposed MFBA method may help distinguish networks or oscillators in the human brain, reveal subtle alternations of networks through locating their dominant frequency band, and present potential to interpret the neuropathology disruptions.

journal_name

Front Comput Neurosci

authors

Qi S,Gao Q,Shen J,Teng Y,Xie X,Sun Y,Wu J

doi

10.3389/fncom.2018.00064

subject

Has Abstract

pub_date

2018-08-03 00:00:00

pages

64

issn

1662-5188

journal_volume

12

pub_type

杂志文章
  • On the role of spatial phase and phase correlation in vision, illusion, and cognition.

    abstract::Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00045

    authors: Gladilin E,Eils R

    更新日期:2015-04-21 00:00:00

  • Letting the daylight in: Reviewing the reviewers and other ways to maximize transparency in science.

    abstract::With the emergence of online publishing, opportunities to maximize transparency of scientific research have grown considerably. However, these possibilities are still only marginally used. We argue for the implementation of (1) peer-reviewed peer review, (2) transparent editorial hierarchies, and (3) online data publi...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00020

    authors: Wicherts JM,Kievit RA,Bakker M,Borsboom D

    更新日期:2012-04-03 00:00:00

  • Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms.

    abstract::Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are li...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00133

    authors: Constantinou M,Gonzalo Cogno S,Elijah DH,Kropff E,Gigg J,Samengo I,Montemurro MA

    更新日期:2016-12-26 00:00:00

  • Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers.

    abstract::The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00118

    authors: Cho K,Jang JH,Kim SP,Lee SH,Chung SC,Kim IY,Jang DP,Jung SJ

    更新日期:2016-11-18 00:00:00

  • Is attentional blink a byproduct of neocortical attractors?

    abstract::This study proposes a computational model for attentional blink or "blink of the mind," a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00013

    authors: Silverstein DN,Lansner A

    更新日期:2011-05-03 00:00:00

  • Alterations of Muscle Synergies During Voluntary Arm Reaching Movement in Subacute Stroke Survivors at Different Levels of Impairment.

    abstract::Motor system uses muscle synergies as a modular organization to simplify the control of movements. Motor cortical impairments, such as stroke and spinal cord injuries, disrupt the orchestration of the muscle synergies and result in abnormal movements. In this paper, the alterations of muscle synergies in subacute stro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00069

    authors: Pan B,Sun Y,Xie B,Huang Z,Wu J,Hou J,Liu Y,Huang Z,Zhang Z

    更新日期:2018-08-21 00:00:00

  • Impact of Physical Obstacles on the Structural and Effective Connectivity of in silico Neuronal Circuits.

    abstract::Scaffolds and patterned substrates are among the most successful strategies to dictate the connectivity between neurons in culture. Here, we used numerical simulations to investigate the capacity of physical obstacles placed on a flat substrate to shape structural connectivity, and in turn collective dynamics and effe...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00077

    authors: Ludl AA,Soriano J

    更新日期:2020-08-31 00:00:00

  • A stimulus-dependent spike threshold is an optimal neural coder.

    abstract::A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory sy...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00061

    authors: Jones DL,Johnson EC,Ratnam R

    更新日期:2015-06-02 00:00:00

  • Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    abstract::Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00062

    authors: Yi GS,Wang J,Tsang KM,Wei XL,Deng B

    更新日期:2015-05-27 00:00:00

  • Segmental Bayesian estimation of gap-junctional and inhibitory conductance of inferior olive neurons from spike trains with complicated dynamics.

    abstract::The inverse problem for estimating model parameters from brain spike data is an ill-posed problem because of a huge mismatch in the system complexity between the model and the brain as well as its non-stationary dynamics, and needs a stochastic approach that finds the most likely solution among many possible solutions...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00056

    authors: Hoang H,Yamashita O,Tokuda IT,Sato MA,Kawato M,Toyama K

    更新日期:2015-05-21 00:00:00

  • Analog Signaling With the "Digital" Molecular Switch CaMKII.

    abstract::Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell signaling by decoding inputs into either high or low states of activity; because the high activation state can be turned on and persist after the input ceases, these switches have earned a reputation as "digital." Although this on/o...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00092

    authors: Clarke SE

    更新日期:2018-11-22 00:00:00

  • A single theoretical framework for circular features processing in humans: orientation and direction of motion compared.

    abstract::Common computational principles underlie processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00028

    authors: Tzvetanov T

    更新日期:2012-05-22 00:00:00

  • Investigating irregularly patterned deep brain stimulation signal design using biophysical models.

    abstract::Parkinson's disease (PD) is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), a nucleus in the basal ganglia (BG). Deep brain stimulation (DBS) is an electrical therapy that modulates the pathological activity to treat the motor symptoms of P...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00078

    authors: Summerson SR,Aazhang B,Kemere C

    更新日期:2015-06-26 00:00:00

  • On the dynamics of cortical development: synchrony and synaptic self-organization.

    abstract::We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristic...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00004

    authors: Wright JJ,Bourke PD

    更新日期:2013-02-15 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00045

    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

    abstract::Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central patte...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00024

    authors: Gjorgjieva J,Berni J,Evers JF,Eglen SJ

    更新日期:2013-04-04 00:00:00

  • Stability constraints on large-scale structural brain networks.

    abstract::Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00031

    authors: Gray RT,Robinson PA

    更新日期:2013-04-12 00:00:00

  • Neural variability, or lack thereof.

    abstract::We do not claim that the brain is completely deterministic, and we agree that noise may be beneficial in some cases. But we suggest that neuronal variability may be often overestimated, due to uncontrolled internal variables, and/or the use of inappropriate reference times. These ideas are not new, but should be re-ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00007

    authors: Masquelier T

    更新日期:2013-02-25 00:00:00

  • Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference.

    abstract::The extent to which groups of neurons exhibit higher-order correlations in their spiking activity is a controversial issue in current brain research. A major difficulty is that currently available tools for the analysis of massively parallel spike trains (N >10) for higher-order correlations typically require vast sam...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00016

    authors: Staude B,Grün S,Rotter S

    更新日期:2010-07-02 00:00:00

  • Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.

    abstract::The emergence of motion sensors as a tool that provides objective motor performance data on individuals afflicted with Parkinson's disease offers an opportunity to expand the horizon of clinical care for this neurodegenerative condition. Subjective clinical scales and patient based motor diaries have limited clinometr...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00072

    authors: Ramdhani RA,Khojandi A,Shylo O,Kopell BH

    更新日期:2018-09-11 00:00:00

  • Conscious Multisensory Integration: Introducing a Universal Contextual Field in Biological and Deep Artificial Neural Networks.

    abstract::Conscious awareness plays a major role in human cognition and adaptive behavior, though its function in multisensory integration is not yet fully understood, hence, questions remain: How does the brain integrate the incoming multisensory signals with respect to different external environments? How are the roles of the...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00015

    authors: Adeel A

    更新日期:2020-05-19 00:00:00

  • Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements.

    abstract::Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the informa...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00112

    authors: Kapucu FE,Välkki I,Mikkonen JE,Leone C,Lenk K,Tanskanen JM,Hyttinen JA

    更新日期:2016-10-18 00:00:00

  • A high-capacity model for one shot association learning in the brain.

    abstract::We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00140

    authors: Einarsson H,Lengler J,Steger A

    更新日期:2014-11-07 00:00:00

  • ARTIE: An Integrated Environment for the Development of Affective Robot Tutors.

    abstract::Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learnin...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00077

    authors: Imbernón Cuadrado LE,Manjarrés Riesco Á,De La Paz López F

    更新日期:2016-08-03 00:00:00

  • A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate.

    abstract::Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00092

    authors: Lenk K,Satuvuori E,Lallouette J,Ladrón-de-Guevara A,Berry H,Hyttinen JAK

    更新日期:2020-01-22 00:00:00

  • Brain Network Analysis and Classification Based on Convolutional Neural Network.

    abstract::Background: Convolution neural networks (CNN) is increasingly used in computer science and finds more and more applications in different fields. However, analyzing brain network with CNN is not trivial, due to the non-Euclidean characteristics of brain network built by graph theory. Method: To address this problem, we...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00095

    authors: Meng L,Xiang J

    更新日期:2018-12-10 00:00:00

  • Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention.

    abstract::Single-unit measurements have reported many different effects of attention on contrast-response (e.g., contrast-gain, response-gain, additive-offset dependent on visibility), while functional imaging measurements have more uniformly reported increases in response across all contrasts (additive-offset). The normalizati...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00012

    authors: Hara Y,Pestilli F,Gardner JL

    更新日期:2014-02-19 00:00:00

  • MACOP modular architecture with control primitives.

    abstract::Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00099

    authors: Waegeman T,Hermans M,Schrauwen B

    更新日期:2013-07-23 00:00:00

  • Deep networks for motor control functions.

    abstract::The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00032

    authors: Berniker M,Kording KP

    更新日期:2015-03-19 00:00:00

  • Empirical Evaluation of Voluntarily Activatable Muscle Synergies.

    abstract::The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factoriz...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00082

    authors: Togo S,Imamizu H

    更新日期:2017-09-06 00:00:00