Glycolate formation catalyzed by spinach leaf transketolase utilizing the superoxide radical.

Abstract:

:A homogeneous preparation of transketolase was obtained from spinach leaf; the specific enzyme activity was 9.5 mumolo of glyceraldehyde-3-P formed (mg of protein)-1 min-1, when xylulose-5-P and ribose-5-P were used as the donor and acceptor, respectively, of the ketol residue. Transketolase catalyzed the formation of glycolate from fructose-6-P coupled with the O2- -generating system of xanthine-xanthine oxidase. The addition of superoxide dismutase (145 units) or 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) (5 mM), both O2- scavengers, to the reaction system inhibited glycolate formation 72 and 58%, respectively. The reacton was not inhibited by catalase. Mannitol, an .OH scavenger, and beta-carotene and 1,4-diazobicyclo[2.2.2]octane, 1O2 scavengers, showed little or no inhibitory effects. The rate of glycolate formation catalyzed by the transketolase system was measured in a coupled reaction with a continuous supply of KO2 dissolved in dimethyl sulfoxide, used as an O2- -generating system. The optimum pH of the reaction was above pH 8.5. The second-order rate constant for the reaction between transketolase and O2-, determined by the competition for O2- between nitroblue tetrazolium (NBT) and transketolase, was 1.0 X 10(6) M-1 s-1. Transketolase showed an inhibitory effect on the O2- -dependent reduction of NBT only if the reaction mixture was previously incubated with ketol donors such as fructose-6-P, xylulose-5-P, or glycolaldehyde. The results suggest the possibility that transketolase catalyzes O2- -dependent glycolate formation under increased steady-state levels of O2- in the chloroplast stroma.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Takabe T,Asami S,Akazawa T

doi

10.1021/bi00558a015

subject

Has Abstract

pub_date

1980-08-19 00:00:00

pages

3985-9

issue

17

eissn

0006-2960

issn

1520-4995

journal_volume

19

pub_type

杂志文章