Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA.

Abstract:

UNLABELLED:This study aims to present a new intelligent polymeric nano-system used for combining chemotherapy with non-viral gene therapy against human cancers. An amphiphilic copolymer synthesized through the conjugation of low molecular weight polyethyleneimine (LMw-PEI) and poly(ε-caprolactone) (PCL) via a bio-cleavable disulfide linkage was successfully employed for the simultaneous delivery of drug and gene molecules into target cells. Compared to the conventional PCL copolymerization pathway, this paper represents a straightforward and efficient reaction pathway including the activation of PCL-diol hydroxyl end groups, cystamine attachment and LMw-PEI conjugation which are successfully performed at mild conditions as confirmed by FTIR and (1)H NMR. Thermal, morphological characteristics as well as biocompatibility of the copolymer were investigated. The copolymer showed great tendency to form positively charged nanoparticles (∼163.1nm, +35.3mV) with hydrophobic core and hydrophilic shell compartments implicating its potential for encapsulation of anti-cancer drug and plasmid DNA, respectively. The gel retardation assay confirmed that the nanoparticles could successfully inhibit the migration of pDNA at ∼5 nanoparticle/pDNAw/w. The in vitro cytotoxicity tests and LDH assay revealed that the cationic amphiphilic copolymer was essentially non-toxic in different carcinoma cell lines in contrast to branched PEI 25K. Moreover, the presence of redox sensitive disulfide linkages provided smart nanoparticles with on-demand release behavior in response to reducing agents such as cytoplasmic glutathione (GSH). Importantly, confocal microscopy images revealed that in contrast to free Dox, the nanoparticles were capable of faster internalizing into the cells and accumulating in the perinuclear region or even in the nucleus. Finally, the co-delivery of Dox and p53-pDNA using the copolymer displayed greater cytotoxic effect compared with the Dox-loaded nanoparticle counterpart as revealed by cell viability and Caspase 3 expression assay. These results suggest the copolymer as a promising candidate for the development of smart delivery systems. STATEMENT OF SIGNIFICANCE:We employed cystamine dihydrochloride as a disulfide linkage for the conjugation of PCL diol and low molecular weight PEI segments through a straightforward and efficient reaction pathway at mild conditions. The new copolymer was essentially non-toxic in different carcinoma cell lines and showed great tendency to form positively charged nanoparticles. Therefore, it can be utilized as a promising platform for simultaneous drug and gene delivery to aggressive cancers. The results of drug and gene co-delivery experiments confirmed the pivotal role of disulfide linkage on the controlled release of both drug and gene molecules in response to glutathione concentration gradient between extracellular and intracellular microenvironments. In addition, the co-delivery of doxorubicin and p53 plasmid DNA using the new copolymer displayed greater cytotoxic effect compared with single agent (i.e. Dox) loaded counterpart, which indicated the significance of rapid dissociation of therapeutic agents from the carrier for synergistic cytotoxic effects on cancer cells.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Davoodi P,Srinivasan MP,Wang CH

doi

10.1016/j.actbio.2016.05.003

subject

Has Abstract

pub_date

2016-07-15 00:00:00

pages

79-93

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(16)30212-4

journal_volume

39

pub_type

杂志文章
  • In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects.

    abstract::The easy clinical handling and applicability of biomaterials has become a focus of materials research due to rapidly increasing time and cost pressures in the public health sector. The present study assesses the in vitro and in vivo performance of a flexible, mouldable, cottonwool-like nanocomposite based on poly(lact...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.11.030

    authors: Schneider OD,Weber F,Brunner TJ,Loher S,Ehrbar M,Schmidlin PR,Stark WJ

    更新日期:2009-06-01 00:00:00

  • Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.

    abstract::In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.02.022

    authors: Wang LS,Lee F,Lim J,Du C,Wan AC,Lee SS,Kurisawa M

    更新日期:2014-06-01 00:00:00

  • Morphological analysis of the antimicrobial action of nitric oxide on gram-negative pathogens using atomic force microscopy.

    abstract::Atomic force microscopy (AFM) was used to study the morphological changes of two gram-negative pathogens, Pseudomonas aeruginosa and Escherichia coli, after exposure to nitric oxide (NO). The time-dependent effects of NO released from a xerogel coating and the concentration-dependent effects rendered by a small molecu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.01.025

    authors: Deupree SM,Schoenfisch MH

    更新日期:2009-06-01 00:00:00

  • In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics.

    abstract::This study concerns the preparation and in vitro characterization of an apatite-wollastonite-2M bioactive glass ceramic which is intended to be used for the regeneration of hard tissue (i.e. in dental and craniomaxillofacial surgery). This bioglass ceramic has been obtained by appropriate thermal treatment through the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.12.027

    authors: Magallanes-Perdomo M,De Aza AH,Mateus AY,Teixeira S,Monteiro FJ,De Aza S,Pena P

    更新日期:2010-06-01 00:00:00

  • Bioengineering of the silica-polymerizing enzyme silicatein-alpha for a targeted application to hydroxyapatite.

    abstract::Since its discovery, numerous biotechnological approaches have aimed to explore the silica-polymerizing catalytic activity of the enzyme silicatein. In vivo, silicatein catalyzes polymerization of amorphous silica nanospheres from soluble precursors. In vitro, it directs the formation of nanostructured biosilica. This...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.03.010

    authors: Natalio F,Link T,Müller WE,Schröder HC,Cui FZ,Wang X,Wiens M

    更新日期:2010-09-01 00:00:00

  • Steroid-eluting contact lenses for corneal and intraocular inflammation.

    abstract::Ocular inflammation is one of the leading causes of blindness worldwide, and steroids in topical ophthalmic solutions (e.g. dexamethasone eye drops) are the mainstay of therapy for ocular inflammation. For many non-infectious ocular inflammatory diseases, such as uveitis, eye drops are administered as often as once ev...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.08.013

    authors: Bengani LC,Kobashi H,Ross AE,Zhai H,Salvador-Culla B,Tulsan R,Kolovou PE,Mittal SK,Chauhan SK,Kohane DS,Ciolino JB

    更新日期:2020-10-15 00:00:00

  • Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles.

    abstract::As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to m...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.01.062

    authors: Yan Y,Fu J,Wang T,Lu X

    更新日期:2017-03-15 00:00:00

  • Inkjet printed antibiotic- and calcium-eluting bioresorbable nanocomposite micropatterns for orthopedic implants.

    abstract::Inkjet printing of antibiotic- and calcium-eluting micropatterns was explored as a novel means of preventing the formation of biofilm colonies and facilitating osteogenic cell development on orthopedic implant surfaces. The micropatterns consisted of a periodic array of ∼50 μm circular dots separated by ∼150 μm. The c...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.08.006

    authors: Gu Y,Chen X,Lee JH,Monteiro DA,Wang H,Lee WY

    更新日期:2012-01-01 00:00:00

  • Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study.

    abstract:UNLABELLED:Quercetin (3,3',4',5,7-pentahydroxy-flavone) is a flavonoid known for its pharmacological activities, which include antioxidant and anti-inflammatory properties, as well as possible beneficial action on diseases involving bone loss. In this work, we explored the possibility to functionalize hydroxyapatite (H...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.12.013

    authors: Forte L,Torricelli P,Boanini E,Gazzano M,Rubini K,Fini M,Bigi A

    更新日期:2016-03-01 00:00:00

  • Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration.

    abstract::Hydroxyapatite (HA) is the main inorganic component of human bone. Inspired by nacre and cortical bone, hydroxyapatite-based coil scaffolds were successfully prepared. The scaffolds presented "brick and mortar" multi-layered structure of nacre and multi-layered concentric circular structure of cortical bone. Because o...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.11.010

    authors: Feng C,Xue J,Yu X,Zhai D,Lin R,Zhang M,Xia L,Wang X,Yao Q,Chang J,Wu C

    更新日期:2021-01-01 00:00:00

  • Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier.

    abstract::Predictive in vitro models are valuable alternatives to animal experiments for evaluating the transport of molecules and (nano)particles across biological barriers. In this work, an improved triple co-culture of air-blood barrier was set-up, being exclusively constituted by human cell lines that allowed to perform exp...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.04.037

    authors: Costa A,de Souza Carvalho-Wodarz C,Seabra V,Sarmento B,Lehr CM

    更新日期:2019-06-01 00:00:00

  • Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo.

    abstract::Avidin was covalently conjugated to the surface of calcium phosphate nanoparticles, coated with a thin silica shell and terminated by sulfhydryl groups (diameter of the solid core about 50nm), with a bifunctional crosslinker connecting the amino groups of avidin to the sulfhydryl group on the nanoparticle surface. Thi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.05.049

    authors: van der Meer SB,Knuschke T,Frede A,Schulze N,Westendorf AM,Epple M

    更新日期:2017-07-15 00:00:00

  • Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices.

    abstract::A major problem with transcutaneous osseointegrated implants is infection, mainly due to improper closure of the implant-skin interface. Therefore, the design of transcutaneous osseointegrated devices that better promote skin growth around these exit sites needs to be examined and, if successful, would clearly limit i...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.12.016

    authors: Puckett SD,Lee PP,Ciombor DM,Aaron RK,Webster TJ

    更新日期:2010-06-01 00:00:00

  • Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage.

    abstract:UNLABELLED:Chondrocyte dedifferentiation presents a major barrier in engineering functional cartilage constructs. To mitigate the effects of dedifferentiation, this study employed a post-expansion aggregate culture step to enhance the chondrogenic phenotype of passaged articular chondrocytes (ACs) before their integrat...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.07.044

    authors: Huang BJ,Hu JC,Athanasiou KA

    更新日期:2016-10-01 00:00:00

  • Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway.

    abstract::Vascular stiffening is associated with the prognosis of cardiovascular disease (CVD). Endothelial dysfunction, as shown by reduced vasodilation and increased vasoconstriction, not only affects vascular tone, but also accelerates the progression of CVD. However, the precise effect of vascular stiffening on endothelial ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.10.013

    authors: Song X,Sun Z,Chen G,Shang P,You G,Zhao J,Liu S,Han D,Zhou H

    更新日期:2019-12-01 00:00:00

  • Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing.

    abstract::Diabetics are prone to chronic wounds that have slower healing, and methods of accelerating the wound closure and to ensure protection from infections are critically needed. MicroRNA-146a gets dysregulated in diabetic wounds and injection of this microRNA combined with reactive oxygen species-scavenging cerium oxide n...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.11.014

    authors: Sener G,Hilton SA,Osmond MJ,Zgheib C,Newsom JP,Dewberry L,Singh S,Sakthivel TS,Seal S,Liechty KW,Krebs MD

    更新日期:2020-01-01 00:00:00

  • New findings confirm the viscoelastic behaviour of the inter-lamellar matrix of the disc annulus fibrosus in radial and circumferential directions of loading.

    abstract::While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM), its clinical relevance is not fully understood. Moreover, no studies have measured the direct tensile and shear failure and viscoelastic properties of the ILM. Therefore, the aim of t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.03.015

    authors: Tavakoli J,Costi JJ

    更新日期:2018-04-15 00:00:00

  • In vivo biomechanical stability of osseointegrating mesoporous TiO(2) implants.

    abstract::Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ord...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.07.035

    authors: Karlsson J,Jimbo R,Fathali HM,Schwartz-Filho HO,Hayashi M,Halvarsson M,Wennerberg A,Andersson M

    更新日期:2012-12-01 00:00:00

  • Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling.

    abstract:UNLABELLED:In order to create tissue-engineered heart valves with long-term functionality, it is essential to fully understand collagen remodeling during neo-tissue formation. Collagen remodeling is thought to maintain mechanical tissue homeostasis. Yet, the driving factor of collagen remodeling remains unidentified. I...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.10.044

    authors: Oomen PJA,Loerakker S,van Geemen D,Neggers J,Goumans MTH,van den Bogaerdt AJ,Bogers AJJC,Bouten CVC,Baaijens FPT

    更新日期:2016-01-01 00:00:00

  • Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration.

    abstract::Hydrogels are appealing biomaterials for applications in regenerative medicine due to their tunable physical and bioactive properties. Meanwhile, therapeutic metal ions, such as magnesium ion (Mg2+), not only regulate the cellular behaviors but also stimulate local bone formation and healing. However, the effective de...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.09.039

    authors: Zhang K,Lin S,Feng Q,Dong C,Yang Y,Li G,Bian L

    更新日期:2017-12-01 00:00:00

  • Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability.

    abstract::A biphasic layer with a Zn-containing beta-tricalcium phosphate (ZnTCP) phase and a fluoridated hydroxyapatite (FHA) phase on titanium alloy substrate was prepared by the sol-gel technique. Scanning electron microscopy and energy-dispersive X-ray analysis results showed the ZnTCP/FHA layer to have a heterogeneous surf...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.08.013

    authors: Miao S,Cheng K,Weng W,Du P,Shen G,Han G,Yan W,Zhang S

    更新日期:2008-03-01 00:00:00

  • Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid.

    abstract::Calcium phosphate cements (CPCs) are highly valuable materials for filling bone defects and bone augmentation by minimal invasive application via percutaneous injection. In the present study some key features were significantly improved by developing a novel injectable ready-to-use calcium phosphate cement based on wa...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.12.017

    authors: Heinemann S,Rössler S,Lemm M,Ruhnow M,Nies B

    更新日期:2013-04-01 00:00:00

  • Energy dispersive X-ray diffraction study of phase development during hardening of calcium phosphate bone cements with addition of chitosan.

    abstract::The aim of this work was to study the phase transformation during the setting reaction of two calcium phosphate bone cements based on either alpha tricalcium phosphate (alpha-TCP) or tetracalcium phosphate (TetCP) initial solid phase, and a magnesium carbonate-phosphoric acid solution as the hardening liquid. Low mole...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.01.006

    authors: Rau JV,Generosi A,Smirnov VV,Ferro D,Rossi Albertini V,Barinov SM

    更新日期:2008-07-01 00:00:00

  • Modulation of osteogenic activity of BMP-2 by cellulose and chitosan derivatives.

    abstract::Polysaccharides with structure and potential bioactivity similar to heparin were synthesized based on cellulose which was regioselectively sulfated, carboxylated or carboxymethylated, and chitosan that was sulfated only. Osteogenic activity of these derivatives was studied in cooperation with BMP-2 using C2C12 myoblas...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.08.012

    authors: Peschel D,Zhang K,Fischer S,Groth T

    更新日期:2012-01-01 00:00:00

  • Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study.

    abstract:UNLABELLED:The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the su...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.09.028

    authors: Faia-Torres AB,Charnley M,Goren T,Guimond-Lischer S,Rottmar M,Maniura-Weber K,Spencer ND,Reis RL,Textor M,Neves NM

    更新日期:2015-12-01 00:00:00

  • An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells.

    abstract::Breast cancer cells (BCCs) can remain dormant at the metastatic site, which when revoked leads to formation of metastasis several years after the treatment of primary tumor. Particularly, awakening of dormant BCCs in the brain results in breast cancer brain metastasis (BCBrM) which marks the most advanced stage of the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.02.039

    authors: Narkhede AA,Crenshaw JH,Crossman DK,Shevde LA,Rao SS

    更新日期:2020-04-15 00:00:00

  • Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues.

    abstract::Scaffold-free harvest of microtissue with a defined structure has received a great deal of interest in cell-based assay and regenerative medicine. In this study, we developed thermally expandable hydrogels with spatially controlled cell adhesive patterns for rapid harvest of geometrically controlled microtissue. We pa...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.07.040

    authors: Lee YB,Kim SJ,Kim EM,Byun H,Chang HK,Park J,Choi YS,Shin H

    更新日期:2017-10-01 00:00:00

  • Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation.

    abstract::In vitro degradation and chondrocyte-encapsulation of chitosan hydrogel made of crosslinkable and water-soluble chitosan derivative (CML) at neutral pH and body temperature were studied with respect to weight loss, cytoviability, DNA content and cell morphology. In vitro degradation of the chitosan hydrogels was sensi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2006.06.007

    authors: Hong Y,Song H,Gong Y,Mao Z,Gao C,Shen J

    更新日期:2007-01-01 00:00:00

  • Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance.

    abstract::Novel porous bilayered scaffolds, fully integrating a silk fibroin (SF) layer and a silk-nano calcium phosphate (silk-nanoCaP) layer for osteochondral defect (OCD) regeneration, were developed. Homogeneous porosity distribution was achieved in the scaffolds, with calcium phosphate phase only retained in the silk-nanoC...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.10.021

    authors: Yan LP,Silva-Correia J,Oliveira MB,Vilela C,Pereira H,Sousa RA,Mano JF,Oliveira AL,Oliveira JM,Reis RL

    更新日期:2015-01-01 00:00:00

  • Self-assembling peptide amphiphile nanofiber matrices for cell entrapment.

    abstract::We have developed a class of peptide amphiphile (PA) molecules that self-assemble into three-dimensional nanofiber networks under physiological conditions in the presence of polyvalent metal ions. The assembly can be triggered by adding PA solutions to cell culture media or other synthetic physiological fluids contain...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2005.04.002

    authors: Beniash E,Hartgerink JD,Storrie H,Stendahl JC,Stupp SI

    更新日期:2005-07-01 00:00:00