Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices.

Abstract:

:Extracellular matrix is a key component of many products in regenerative medicine. Multiple regenerative medicine products currently in the clinic are comprised of human or xenogeneic extracellular matrix. In addition, whole-organ regeneration exploits decellularized native organs as scaffolds for organotypic cell culture. However, precise understanding of the constituents of such extracellular matrix-based implants and scaffolds has sorely lagged behind their use. We present here an advanced protein extraction method using known quantities of proteotypic 13C-labeled peptides to quantify matrix proteins in native and decellularized lung tissues. Using quantitative proteomics that produce picomole-level measurements of a large number of matrix proteins, we show that a mild decellularization technique ("Triton/SDC") results in near-native retention of laminins, proteoglycans, and other basement membrane and ECM-associated proteins. Retention of these biologically important glycoproteins and proteoglycans is quantified to be up to 27-fold higher in gently-decellularized lung scaffolds compared to scaffolds generated using a previously published decellularization regimen. Cells seeded onto this new decellularized matrix also proliferate robustly, showing positive staining for proliferating cell nuclear antigen (PCNA). The high fidelity of the gently decellularized scaffold as compared to the original lung extracellular matrix represents an important step forward in the ultimate recapitulation of whole organs using tissue-engineering techniques. This method of ECM and scaffold protein analysis allows for better understanding, and ultimately quality control, of matrices that are used for tissue engineering and human implantation. These results should advance regenerative medicine in general, and whole organ regeneration in particular. STATEMENT OF SIGNIFICANCE:The extracellular matrix (ECM) in large part defines the biochemical and mechanical properties of tissues and organs; these inherent cues make acellular ECM scaffolds potent substrates for tissue regeneration. As such, they are increasingly prevalent in the clinic and the laboratory. However, the exact composition of these scaffolds has been difficult to ascertain. This paper uses targeted proteomics to definitively quantify 71 proteins present in acellular lung ECM scaffolds. We use this technique to compare two decellularization methods and demonstrate superior retention of ECM proteins important for cell adhesion, migration, proliferation, and differentiation in scaffolds treated with low-concentration detergent solutions. In the long term, the ability to acquire quantitative biochemical data about biological substrates will facilitate the rational design of engineered tissues and organs based on precise cell-matrix interactions.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Calle EA,Hill RC,Leiby KL,Le AV,Gard AL,Madri JA,Hansen KC,Niklason LE

doi

10.1016/j.actbio.2016.09.043

subject

Has Abstract

pub_date

2016-12-01 00:00:00

pages

91-100

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(16)30516-5

journal_volume

46

pub_type

杂志文章
  • Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.

    abstract::This paper reports a new method of cross-linking electrospun zein fibers using citric acid as a non-toxic cross-linker to enhance the water stability and cytocompatibility of zein fibers for tissue engineering and other medical applications. The electrospun structure has many advantages over other types of structures ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.04.024

    authors: Jiang Q,Reddy N,Yang Y

    更新日期:2010-10-01 00:00:00

  • Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration.

    abstract::The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics-based approach is ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.05.024

    authors: An C,Liu W,Zhang Y,Pang B,Liu H,Zhang Y,Zhang H,Zhang L,Liao H,Ren C,Wang H

    更新日期:2020-07-15 00:00:00

  • Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within three-dimensional collagen scaffolds.

    abstract::A critical challenge to regenerating close mimics of native axonal pathways under chronic neurodegenerative disease or injury conditions is the inability to stimulate, sustain and steer neurite outgrowth over a long distance, until they reach their intended targets. Understanding neurite outgrowth necessitates quantit...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.05.009

    authors: Kothapalli CR,Honarmandi P

    更新日期:2014-08-01 00:00:00

  • Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents.

    abstract::Biodegradable magnesium alloy stents (MAS) could present improved long-term clinical performances over commercial bare metal or drug-eluting stents. However, MAS were found to show limited mechanical support for diseased vessels due to fast degradation. Optimizing stent design through finite element analysis (FEA) is ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.10.035

    authors: Wu W,Chen S,Gastaldi D,Petrini L,Mantovani D,Yang K,Tan L,Migliavacca F

    更新日期:2013-11-01 00:00:00

  • Neither cortical nor trabecular: An unusual type of bone in the heavy-load-bearing lower pharyngeal jaw of the black drum (Pogonias cromis).

    abstract::Durophagous fish consume a diet based primarily on hard-shelled animals, mainly mollusks. In order to successfully perform this task, they are equipped with an extra set of jaws located in their throat called pharyngeal jaws. Here we present the results of a study of the structure of the bony material of the exception...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.01.001

    authors: Ziv E,Milgram J,Davis J,Soares A,Wilde F,Zaslansky P,Shahar R

    更新日期:2020-03-01 00:00:00

  • Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model.

    abstract::This work investigated the delivery of marrow mesenchymal stem cells (MSCs), with or without the growth factor transforming growth factor-beta1 (TGF-beta1), from biodegradable hydrogel composites on the repair of osteochondral defects in a rabbit model. Three formulations of oligo(poly(ethylene glycol) fumarate) (OPF)...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.07.041

    authors: Guo X,Park H,Young S,Kretlow JD,van den Beucken JJ,Baggett LS,Tabata Y,Kasper FK,Mikos AG,Jansen JA

    更新日期:2010-01-01 00:00:00

  • Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels.

    abstract::Development of an ex vivo culture system to expand satellite cells, the resident muscle stem cell population, will be necessary for the development of their use as therapeutics. The loss of the niche environment is often cited as the reason that culture results in both the loss of myogenic potential and low re-engraft...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.08.019

    authors: Palade J,Pal A,Rawls A,Stabenfeldt S,Wilson-Rawls J

    更新日期:2019-10-01 00:00:00

  • Effect of strain on degradation behaviors of WE43, Fe and Zn wires.

    abstract::The biodegradable metallic devices undergo stress/strain-induced corrosion when they are used for load-bearing applications. The stress/strain induced-corrosion behavior causes differences in corrosion rate, corrosion morphology, strain distribution and mechanical performance of the devices. One representative example...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.06.028

    authors: Chen K,Lu Y,Tang H,Gao Y,Zhao F,Gu X,Fan Y

    更新日期:2020-09-01 00:00:00

  • UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings.

    abstract::Using ultraviolet (UV) irradiation of micro-arc oxidized (MAO) titania coating in distilled water for 0.5 and 2h, we have achieved an enhanced bioactivity and cell response to titania surface. The MAO coating appears porous and predominantly consists of nanocrystallized anatase TiO(2). Compared with the MAO coating, t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.03.005

    authors: Han Y,Chen D,Sun J,Zhang Y,Xu K

    更新日期:2008-09-01 00:00:00

  • Bioinspirational understanding of flexural performance in hedgehog spines.

    abstract::In this research, the flexural performance of hedgehog spines is investigated in four ways. First, X-ray micro-computed tomography (μCT) is employed to analyze the complex internal architecture of hedgehog spines. μCT images reveal distinct structural morphology, characterized by longitudinal stringers and transverse ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.04.036

    authors: Drol CJ,Kennedy EB,Hsiung BK,Swift NB,Tan KT

    更新日期:2019-08-01 00:00:00

  • Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.

    abstract::Many steps are required to generate bone through endochondral ossification with adipose mesenchymal stromal cells (ASC), from cell isolation to in vitro monolayer expansion, seeding into scaffolds, cartilaginous differentiation and in vivo remodeling. Moreover, monolayer expansion and passaging of ASC strongly decreas...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.07.004

    authors: Guerrero J,Pigeot S,Müller J,Schaefer DJ,Martin I,Scherberich A

    更新日期:2018-09-01 00:00:00

  • Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies.

    abstract::Bone morphogenetic protein-2 (BMP-2) involved therapy is of great potential for bone regeneration. However, its clinical application is restricted due to the undesirable bioactivity and relevant complications in vivo. Immobilization of recombinant BMP-2 (rhBMP-2) is an efficient strategy to mimic natural microenvironm...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.09.011

    authors: Chen R,Yu Y,Zhang W,Pan Y,Wang J,Xiao Y,Liu C

    更新日期:2018-10-15 00:00:00

  • Fibrin hydrogels as a xenofree and rapidly degradable support for transplantation of retinal pigment epithelium monolayers.

    abstract::Recent phase 1 trials of embryonic stem cell and induced pluripotent stem cell (iPSCs) derived RPE transplants for the treatment of macular degeneration have demonstrated the relative safety of this process. However, there is concern over clumping, thickening, folding, and wrinkling of the transplanted RPE. To deliver...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.11.058

    authors: Gandhi JK,Manzar Z,Bachman LA,Andrews-Pfannkoch C,Knudsen T,Hill M,Schmidt H,Iezzi R,Pulido JS,Marmorstein AD

    更新日期:2018-02-01 00:00:00

  • Direct quantification of dual protein adsorption dynamics in three dimensional systems in presence of cells.

    abstract::Understanding the composition of the adsorbed protein layer on a biomaterial surface is of an extreme importance as it directs the primary biological response. Direct detection using labeled proteins and indirect detection based on enzymatic assays or changes to mass, refractive index or density of a surface have been...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.05.021

    authors: Sarem M,Vonwil D,Lüdeke S,Shastri VP

    更新日期:2017-07-15 00:00:00

  • Functional role of glycosaminoglycans in decellularized lung extracellular matrix.

    abstract::Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in dec...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.11.029

    authors: Uhl FE,Zhang F,Pouliot RA,Uriarte JJ,Rolandsson Enes S,Han X,Ouyang Y,Xia K,Westergren-Thorsson G,Malmström A,Hallgren O,Linhardt RJ,Weiss DJ

    更新日期:2020-01-15 00:00:00

  • Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon.

    abstract::Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.01.032

    authors: Szczesny SE,Elliott DM

    更新日期:2014-06-01 00:00:00

  • Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis.

    abstract::The clinical applications of protein drugs are restricted because of the absence of viable protein delivery vehicles. Here, we report on reduction- and pH--sensitive crosslinked polymersomes based on the poly(ethylene glycol)-poly(acrylic acid)-poly(2-(diethyl amino)ethyl methacrylate) (PEG-PAA-PDEA) triblock copolyme...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.01.010

    authors: Sun H,Meng F,Cheng R,Deng C,Zhong Z

    更新日期:2014-05-01 00:00:00

  • Construction of tendon replacement tissue based on collagen sponge and mesenchymal stem cells by coupled mechano-chemical induction and evaluation of its tendon repair abilities.

    abstract::Tissue engineering is an ideal therapeutic strategy for the development of functional tendon replacement tissue for tendon repair in the clinic. Currently, the synergistic roles of mechano-chemical factors and the mechanisms involved in tendon repair and regeneration are not fully understood. In this study, we develop...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.04.047

    authors: Zhang B,Luo Q,Deng B,Morita Y,Ju Y,Song G

    更新日期:2018-07-01 00:00:00

  • Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    abstract::In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.11.067

    authors: Yu Y,Jin G,Xue Y,Wang D,Liu X,Sun J

    更新日期:2017-02-01 00:00:00

  • Calcification of cartilage formed in vitro on calcium polyphosphate bone substitutes is regulated by inorganic polyphosphate.

    abstract::A major challenge to the successful clinical application of bioengineered cartilage remains its integration to surrounding tissues upon implantation. One way to address this consists of generating biphasic constructs composed of articular cartilage formed in vitro on the top surface and integrated with the porous sub-...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.02.033

    authors: St-Pierre JP,Pilliar RM,Grynpas MD,Kandel RA

    更新日期:2010-08-01 00:00:00

  • Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries.

    abstract::Surgical and interventional therapies for atherosclerotic lesions of the infrainguinal arteries are notorious for high rates of failure. Frequently, this leads to expensive reinterventions, return of disabling symptoms or limb loss. Interaction between the artery and repair material likely plays an important role in r...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.12.027

    authors: Kamenskiy AV,Pipinos II,Dzenis YA,Lomneth CS,Kazmi SA,Phillips NY,MacTaggart JN

    更新日期:2014-03-01 00:00:00

  • Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites.

    abstract::The fibrils in the bone matrix are glued together by extracellular matrix proteins to form laminated structures (osteons) to provide elasticity and a supportive substrate for osteogenesis. The objective of this work was to investigate material properties and osteogenic differentiation of bone marrow stromal (BMS) cell...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.12.003

    authors: Xu W,Ma J,Jabbari E

    更新日期:2010-06-01 00:00:00

  • Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors.

    abstract::Challenges remain in the generation of heterogeneous tissues and the repairing of interfacial tissue between soft and hard tissues. The development of tissue engineering scaffolds with gradients in composition, structure, mechanical and chemical properties is essential to modulate cellular behaviors in a graded way an...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.01.003

    authors: Zou B,Liu Y,Luo X,Chen F,Guo X,Li X

    更新日期:2012-04-01 00:00:00

  • Focal adhesion kinase knockdown modulates the response of human corneal epithelial cells to topographic cues.

    abstract::A rapidly expanding literature broadly documents the impact of biophysical cues on cellular behaviors. In spite of increasing research efforts in this field, the underlying signaling processes are poorly understood. One of the candidate molecules for being involved in mechanotransduction is focal adhesion kinase (FAK)...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.07.004

    authors: Dreier B,Raghunathan VK,Russell P,Murphy CJ

    更新日期:2012-12-01 00:00:00

  • Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: design, intrinsic and extrinsic factor considerations.

    abstract::Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2021.01.027

    authors: Zhang Q,Yang Y,Yildirimer L,Xu T,Zhao X

    更新日期:2021-01-25 00:00:00

  • Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation.

    abstract::This paper presents an experimental investigation and evidence of rate-dependency in the planar mechanical behaviour of semilunar heart valves. Samples of porcine aortic and pulmonary valves were subjected to biaxial deformations across 1000-fold stretch rate, ranging from λ̇=0.001 to 1 s-1. The experimental campaign ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.02.008

    authors: Anssari-Benam A,Tseng YT,Holzapfel GA,Bucchi A

    更新日期:2019-04-01 00:00:00

  • Inhibition of osteoclastogenesis by stem cell-derived extracellular matrix through modulation of intracellular reactive oxygen species.

    abstract::Decellularized extracellular matrix (ECM) derived from stem cells has been shown as a promising biomaterial for bone regeneration because of the promotion effect on osteogenesis in mesenchymal stem cells (MSCs). However, bone regeneration is also influenced by bone resorption and little is known about the effect of ce...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.03.003

    authors: Li M,Chen X,Yan J,Zhou L,Wang Y,He F,Lin J,Zhu C,Pan G,Yu J,Pei M,Yang H,Liu T

    更新日期:2018-04-15 00:00:00

  • Therapeutic enhancement of a cytotoxic agent using photochemical internalisation in 3D compressed collagen constructs of ovarian cancer.

    abstract::Photochemical internalisation (PCI) is a method for enhancing delivery of drugs to their intracellular target sites of action. In this study we investigated the efficacy of PCI using a porphyrin photosensitiser and a cytotoxic agent on spheroid and non-spheroid compressed collagen 3D constructs of ovarian cancer versu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.09.041

    authors: Hadi LM,Yaghini E,Stamati K,Loizidou M,MacRobert AJ

    更新日期:2018-11-01 00:00:00

  • Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration.

    abstract::Articular cartilage has limited capacity for regeneration and when damaged cannot be repaired with currently available metallic or synthetic implants. We aim to bioengineer a microfibre-reinforced hydrogel that can capture the zonal depth-dependent mechanical properties of native cartilage, and simultaneously support ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.06.030

    authors: Castilho M,Mouser V,Chen M,Malda J,Ito K

    更新日期:2019-09-01 00:00:00

  • Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA.

    abstract:UNLABELLED:This study aims to present a new intelligent polymeric nano-system used for combining chemotherapy with non-viral gene therapy against human cancers. An amphiphilic copolymer synthesized through the conjugation of low molecular weight polyethyleneimine (LMw-PEI) and poly(ε-caprolactone) (PCL) via a bio-cleav...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.05.003

    authors: Davoodi P,Srinivasan MP,Wang CH

    更新日期:2016-07-15 00:00:00