Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration.

Abstract:

:Articular cartilage has limited capacity for regeneration and when damaged cannot be repaired with currently available metallic or synthetic implants. We aim to bioengineer a microfibre-reinforced hydrogel that can capture the zonal depth-dependent mechanical properties of native cartilage, and simultaneously support neo-cartilage formation. With this goal, a sophisticated bi-layered microfibre architecture, combining a densely distributed crossed fibre mat (superficial tangential zone, STZ) and a uniform box structure (middle and deep zone, MDZ), was successfully manufactured via melt electrospinning and combined with a gelatin-methacrylamide hydrogel. The inclusion of a thin STZ layer greatly increased the composite construct's peak modulus under both incongruent (3.2-fold) and congruent (2.1-fold) loading, as compared to hydrogels reinforced with only a uniform MDZ structure. Notably, the stress relaxation response of the bi-layered composite construct was comparable to the tested native cartilage tissue. Furthermore, similar production of sulphated glycosaminoglycans and collagen II was observed for the novel composite constructs cultured under mechanical conditioning w/o TGF-ß1 supplementation and in static conditions w/TGF-ß1 supplementation, which confirmed the capability of the novel composite construct to support neo-cartilage formation upon mechanical stimulation. To conclude, these results are an important step towards the design and manufacture of biomechanically competent implants for cartilage regeneration. STATEMENT OF SIGNIFICANCE: Damage to articular cartilage results in severe pain and joint disfunction that cannot be treated with currently available implants. This study presents a sophisticated bioengineered bi-layered fibre reinforced cell-laden hydrogel that can approximate the functional mechanical properties of native cartilage. For the first time, the importance of incorporating a viable superficial tangential zone (STZ) - like structure to improve the load-bearing properties of bioengineered constructs, particularly when in-congruent surfaces are compressed, is demonstrated. The present work also provides new insights for the development of implants that are able to promote and guide new cartilaginous tissue formation upon physiologically relevant mechanical stimulation.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Castilho M,Mouser V,Chen M,Malda J,Ito K

doi

10.1016/j.actbio.2019.06.030

subject

Has Abstract

pub_date

2019-09-01 00:00:00

pages

297-306

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(19)30443-X

journal_volume

95

pub_type

杂志文章
  • Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder.

    abstract::One of the challenges of using bioactive bone cements is adjusting their handling properties for clinical application. To resolve the poorer handling properties of bioactive bone cements we developed a novel bioactive bone cement containing a unique polymethylmethacrylate (PMMA) powder, termed SPD-PMMA (40 μm in diame...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.06.006

    authors: Fukuda C,Goto K,Imamura M,Neo M,Nakamura T

    更新日期:2011-10-01 00:00:00

  • Design and characterization of sulfobetaine-containing terpolymer biomaterials.

    abstract::A methacrylic terpolymer system with non-fouling interfacial properties was synthesized by the random copolymerization of hexyl methacrylate, methyl methacrylate and sulfobetaine methacrylate (a monomer bearing a zwitterionic pendant group). Polymers were synthesized from feeds containing 0-15 mol.% of the zwitterion-...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.03.052

    authors: Heath DE,Cooper SL

    更新日期:2012-08-01 00:00:00

  • An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration.

    abstract::Tissue-derived extracellular matrix (ECM) biomaterials to regenerate the meniscus have gained increasing attention in treating meniscus injuries and diseases, particularly for aged persons and athletes. However, ECM scaffold has poor cell infiltration and can only be implanted using surgical procedures. To overcome th...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.01.027

    authors: Wu J,Ding Q,Dutta A,Wang Y,Huang YH,Weng H,Tang L,Hong Y

    更新日期:2015-04-01 00:00:00

  • A tyrosine-rich amelogenin peptide promotes neovasculogenesis in vitro and ex vivo.

    abstract::The formation of new blood vessels has been shown to be fundamental in the repair of many damaged tissues, and we have recently shown that the adult human periodontal ligament contains multipotent stem/progenitor cells that are capable of undergoing vasculogenic and angiogenic differentiation in vitro and ex vivo. Ena...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.11.027

    authors: Amin HD,Olsen I,Knowles J,Dard M,Donos N

    更新日期:2014-05-01 00:00:00

  • Effect of strain on degradation behaviors of WE43, Fe and Zn wires.

    abstract::The biodegradable metallic devices undergo stress/strain-induced corrosion when they are used for load-bearing applications. The stress/strain induced-corrosion behavior causes differences in corrosion rate, corrosion morphology, strain distribution and mechanical performance of the devices. One representative example...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.06.028

    authors: Chen K,Lu Y,Tang H,Gao Y,Zhao F,Gu X,Fan Y

    更新日期:2020-09-01 00:00:00

  • Peptide-mediated shape- and size-tunable synthesis of gold nanostructures.

    abstract::While several biological processes have been shown to be useful for the production of well-designed, inorganic nanostructures, the mechanism(s) controlling the size and shape of nano and micron size particles remains elusive. Here we report on the controlled size- and shape-specific production of gold nanostructures u...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.01.019

    authors: Kim J,Rheem Y,Yoo B,Chong Y,Bozhilov KN,Kim D,Sadowsky MJ,Hur HG,Myung NV

    更新日期:2010-07-01 00:00:00

  • Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin.

    abstract::Magnetic N-benzyl-O-carboxymethylchitosan nanoparticles were synthesized through incorporation and in situ methods and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and magnetization measurements. Indomethacin was incorporated into the nanoparticles via...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.05.001

    authors: Debrassi A,Bürger C,Rodrigues CA,Nedelko N,Ślawska-Waniewska A,Dłużewski P,Sobczak K,Greneche JM

    更新日期:2011-08-01 00:00:00

  • Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements.

    abstract:UNLABELLED:A new a biocompatible Ti42Zr40Ta3Si15 (atomic %) porous bulk glassy alloy was produced by combination of rapid solidification and powder metallurgy techniques. Amorphous alloy ribbons were fabricated by melt spinning, i.e. extremely fast quenching the molten alloy with 10(6)K/s from T=1973K down to room temp...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.03.020

    authors: Nicoara M,Raduta A,Parthiban R,Locovei C,Eckert J,Stoica M

    更新日期:2016-05-01 00:00:00

  • Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs.

    abstract::Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer and inform development of the envisaged...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.09.014

    authors: Garcia JP,Longoni A,Gawlitta D,J W P Rosenberg A,Grinstaff MW,Töyräs J,Weinans H,Creemers LB,Pouran B

    更新日期:2019-12-01 00:00:00

  • Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation.

    abstract::Our objectives were to correlate the mineral density (MD) and elastic modulus (E) of natural white spot lesions (WSLs) and compare them with analytical and numerical models. Five natural WSLs from four extracted sound premolar teeth were scanned at a voxel size of 7.6μm using a desktop X-ray microtomography (XRMT) sys...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.06.028

    authors: Huang TT,He LH,Darendeliler MA,Swain MV

    更新日期:2010-12-01 00:00:00

  • Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects.

    abstract::Copper-containing bioactive glass nanoparticles (Cu-BG NPs) with designed compositions and sizes were synthesized and incorporated into chitosan (CH)/silk fibroin (SF)/glycerophosphate (GP) composites to prepare injectable hydrogels for cell-free bone repair. The resulting Cu-BG/CH/SF/GP gels were found to exhibit wel...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.04.023

    authors: Wu J,Zheng K,Huang X,Liu J,Liu H,Boccaccini AR,Wan Y,Guo X,Shao Z

    更新日期:2019-06-01 00:00:00

  • Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: A finite element analysis of healthy and degenerated discs.

    abstract::Tissues in the intervertebral disc have a large capacity to absorb water, partially due to the high glycosaminoglycan (GAG) content, which decreases linearly from the nucleus pulposus (NP) in the center to the outer annulus. Our recent work showed that fiber network and GAG distribution contributes to development of r...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.09.035

    authors: Yang B,O'Connell GD

    更新日期:2019-12-01 00:00:00

  • Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces.

    abstract::Evidence that macrophages can play a role in accelerating corrosion in CoCrMo alloy in total hip replacement (THR) interfaces leads to questions regarding the underlying cellular mechanisms and immunological responses. Hence, we evaluated the role of macrophages in corrosion processes using the cell culture supernatan...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.10.039

    authors: Bijukumar DR,Salunkhe S,Zheng G,Barba M,Hall DJ,Pourzal R,Mathew MT

    更新日期:2020-01-01 00:00:00

  • Anisotropy of nickel release and corrosion in austenitic stainless steels.

    abstract::The study of 316L-type stainless steel reveals a significant anisotropy of nickel release that is dependent on the orientation of the test surface with respect to the casting and rolling direction. Cross-sectional specimens (transversal cuts with respect to the rolling direction) show a substantially higher sensitivit...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.10.008

    authors: Reclaru L,Lüthy H,Ziegenhagen R,Eschler PY,Blatter A

    更新日期:2008-05-01 00:00:00

  • Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway.

    abstract::Vascular stiffening is associated with the prognosis of cardiovascular disease (CVD). Endothelial dysfunction, as shown by reduced vasodilation and increased vasoconstriction, not only affects vascular tone, but also accelerates the progression of CVD. However, the precise effect of vascular stiffening on endothelial ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.10.013

    authors: Song X,Sun Z,Chen G,Shang P,You G,Zhao J,Liu S,Han D,Zhou H

    更新日期:2019-12-01 00:00:00

  • Indentation stiffness of aging human costal cartilage.

    abstract::Costal cartilage, connecting the ribs and sternum, serves a mechanical function in the body. It undergoes structural changes with aging but it is unclear if its material properties are affected by these changes. To investigate this question, experimental indentation load-relaxation tests were performed on human costal...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.06.008

    authors: Lau A,Oyen ML,Kent RW,Murakami D,Torigaki T

    更新日期:2008-01-01 00:00:00

  • Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells.

    abstract::We hypothesized that generating spinal motor neurons (sMNs) from human induced pluripotent stem cell (hiPSC)-derived neural aggregates (NAs) using a chemically-defined differentiation protocol would be more effective inside of 3D fibrin hydrogels compared to 2D poly-L-ornithine(PLO)/laminin-coated tissue culture plast...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.01.040

    authors: Edgar JM,Robinson M,Willerth SM

    更新日期:2017-03-15 00:00:00

  • Corneal regeneration: A review of stromal replacements.

    abstract::Corneal blindness is traditionally treated by transplantation of a donor cornea, or in severe cases by implantation of an artificial cornea or keratoprosthesis. Due to severe donor shortages and the risks of complications that come with artificial corneas, tissue engineering in ophthalmology has become more focused on...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2018.01.023

    authors: Matthyssen S,Van den Bogerd B,Dhubhghaill SN,Koppen C,Zakaria N

    更新日期:2018-03-15 00:00:00

  • Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance.

    abstract::Novel porous bilayered scaffolds, fully integrating a silk fibroin (SF) layer and a silk-nano calcium phosphate (silk-nanoCaP) layer for osteochondral defect (OCD) regeneration, were developed. Homogeneous porosity distribution was achieved in the scaffolds, with calcium phosphate phase only retained in the silk-nanoC...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.10.021

    authors: Yan LP,Silva-Correia J,Oliveira MB,Vilela C,Pereira H,Sousa RA,Mano JF,Oliveira AL,Oliveira JM,Reis RL

    更新日期:2015-01-01 00:00:00

  • A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    abstract::Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegrad...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.08.047

    authors: Yang Y,Liu X,Li Y,Wang Y,Bao C,Chen Y,Lin Q,Zhu L

    更新日期:2017-10-15 00:00:00

  • Effect of diffusion coating of Nd on the corrosion resistance of biodegradable Mg implants in simulated physiological electrolyte.

    abstract::The effect of diffusion coating of Nd on the corrosion performance of Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca alloy (EW10X04) used as a new structural material for biodegradable implants was evaluated in a simulated physiological electrolyte. The initial Nd layer with a thickness of 1 μm was obtained by a physical vapor deposit...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.01.009

    authors: Levy G,Aghion E

    更新日期:2013-11-01 00:00:00

  • Effect of cleaning and sterilization on titanium implant surface properties and cellular response.

    abstract::Titanium (Ti) has been widely used as an implant material due to the excellent biocompatibility and corrosion resistance of its oxide surface. Biomaterials must be sterile before implantation, but the effects of sterilization on their surface properties have been less well studied. The effects of cleaning and steriliz...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.11.026

    authors: Park JH,Olivares-Navarrete R,Baier RE,Meyer AE,Tannenbaum R,Boyan BD,Schwartz Z

    更新日期:2012-05-01 00:00:00

  • Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays.

    abstract::A dual targeting delivery system was developed to completely conquer the two barriers that glioma treatment faces: the blood-brain barrier (BBB) and the brain-glioma barrier. Recently, a system comprising AS1411 aptamer (for glioma targeting) and TGN peptide (for BBB targeting) modified nanoparticles (AsTNPs) was deve...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.11.003

    authors: Gao H,Yang Z,Zhang S,Pang Z,Liu Q,Jiang X

    更新日期:2014-02-01 00:00:00

  • Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices.

    abstract::Extracellular matrix is a key component of many products in regenerative medicine. Multiple regenerative medicine products currently in the clinic are comprised of human or xenogeneic extracellular matrix. In addition, whole-organ regeneration exploits decellularized native organs as scaffolds for organotypic cell cul...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.09.043

    authors: Calle EA,Hill RC,Leiby KL,Le AV,Gard AL,Madri JA,Hansen KC,Niklason LE

    更新日期:2016-12-01 00:00:00

  • Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity.

    abstract::Antimicrobial peptides (AMPs), which are produced by multicellular organisms as a defense mechanism against competing pathogenic microbes, appear to be excellent candidates for the development of novel antimicrobial agents. Amphipathicity is traditionally believed to be crucial to the de novo design or systematic opti...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.08.043

    authors: Zhu X,Dong N,Wang Z,Ma Z,Zhang L,Ma Q,Shan A

    更新日期:2014-01-01 00:00:00

  • Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth.

    abstract::The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schw...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.10.008

    authors: Romano NH,Madl CM,Heilshorn SC

    更新日期:2015-01-01 00:00:00

  • Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration.

    abstract::Over the past decades, numerous tissue-engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate the functionalized calcified layer. In this study, the potential of icariin (Ica) conjugated hyaluronic acid/collagen (Ica-HA/Col) hydrogel to promote th...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.05.005

    authors: Yang J,Liu Y,He L,Wang Q,Wang L,Yuan T,Xiao Y,Fan Y,Zhang X

    更新日期:2018-07-01 00:00:00

  • A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc.

    abstract::Tissue-engineered temporomandibular joint (TMJ) discs offer a viable treatment option for patients with severe joint internal derangement. To date, only a handful of TMJ tissue engineering studies have been carried out and all have incorporated the use of synthetic scaffold materials. These current scaffolds have show...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.01.016

    authors: Lumpkins SB,Pierre N,McFetridge PS

    更新日期:2008-07-01 00:00:00

  • Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy.

    abstract::Bacteria have inherent properties of self-propelled navigation and specific infiltration into solid tumors. In the current study, we investigate a novel type of bacterial microbots for delivery of hybrid micelles to promote the synergistic antitumor efficacy. Escherichia coli Nissle 1917 (EcN) is used as a bacterial c...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.07.041

    authors: Xie S,Chen M,Song X,Zhang Z,Zhang Z,Chen Z,Li X

    更新日期:2018-09-15 00:00:00

  • Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers.

    abstract::We have previously shown that recombinant human collagen can be crosslinked with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) to fabricate transparent hydrogels possessing the shape and dimensions of the human cornea. These corneal implants have been tested in a Phase I human clinical study. Although these hyd...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.04.014

    authors: Ahn JI,Kuffova L,Merrett K,Mitra D,Forrester JV,Li F,Griffith M

    更新日期:2013-08-01 00:00:00