Land cover change and carbon emissions over 100 years in an African biodiversity hotspot.

Abstract:

:Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the presatellite era. Here, we quantify the LULCC history across the 33.9 million ha watershed of Tanzania's Eastern Arc Mountains, using geo-referenced and digitized historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a fivefold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4-1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha(-1)  yr(-1) . This is at least threefold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8-5.7) Mg C ha(-1) , compared to a committed loss of 11.9 (7.2-16.6) Mg C ha(-1) within areas lacking such protection. Furthermore, for nine protected areas where LULCC data are available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Willcock S,Phillips OL,Platts PJ,Swetnam RD,Balmford A,Burgess ND,Ahrends A,Bayliss J,Doggart N,Doody K,Fanning E,Green JM,Hall J,Howell KL,Lovett JC,Marchant R,Marshall AR,Mbilinyi B,Munishi PK,Owen N,Topp-Jorgen

doi

10.1111/gcb.13218

subject

Has Abstract

pub_date

2016-08-01 00:00:00

pages

2787-800

issue

8

eissn

1354-1013

issn

1365-2486

journal_volume

22

pub_type

杂志文章
  • Cocoa agroforestry is less resilient to suboptimal and extreme climate than cocoa in full sun: Reply to Norgrove (2017).

    abstract::Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects. ...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14044

    authors: Abdulai I,Vaast P,Hoffmann MP,Asare R,Jassogne L,Asten PV,Rötter RP,Graefe S

    更新日期:2018-05-01 00:00:00

  • Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.

    abstract::In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13944

    authors: Gütlein A,Gerschlauer F,Kikoti I,Kiese R

    更新日期:2018-03-01 00:00:00

  • Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.

    abstract::Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13875

    authors: Arimitsu ML,Hobson KA,Webber DN,Piatt JF,Hood EW,Fellman JB

    更新日期:2018-01-01 00:00:00

  • A catastrophic tropical drought kills hydraulically vulnerable tree species.

    abstract::Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicti...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15037

    authors: Powers JS,Vargas G G,Brodribb TJ,Schwartz NB,Pérez-Aviles D,Smith-Martin CM,Becknell JM,Aureli F,Blanco R,Calderón-Morales E,Calvo-Alvarado JC,Calvo-Obando AJ,Chavarría MM,Carvajal-Vanegas D,Jiménez-Rodríguez CD,Murillo Cha

    更新日期:2020-05-01 00:00:00

  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    abstract::Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters infl...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13059

    authors: Cloern JE,Abreu PC,Carstensen J,Chauvaud L,Elmgren R,Grall J,Greening H,Johansson JO,Kahru M,Sherwood ET,Xu J,Yin K

    更新日期:2016-02-01 00:00:00

  • Can carbon emissions from tropical deforestation drop by 50% in 5 years?

    abstract::Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-govern...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13153

    authors: Zarin DJ,Harris NL,Baccini A,Aksenov D,Hansen MC,Azevedo-Ramos C,Azevedo T,Margono BA,Alencar AC,Gabris C,Allegretti A,Potapov P,Farina M,Walker WS,Shevade VS,Loboda TV,Turubanova S,Tyukavina A

    更新日期:2016-04-01 00:00:00

  • Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms.

    abstract::The urban heat island effect, where urban areas exhibit higher temperatures than less-developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanizati...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14509

    authors: Battles AC,Kolbe JJ

    更新日期:2019-02-01 00:00:00

  • Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus).

    abstract::The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14766

    authors: Jakoby O,Lischke H,Wermelinger B

    更新日期:2019-12-01 00:00:00

  • Light and warming drive forest understorey community development in different environments.

    abstract::Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land-u...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14955

    authors: Blondeel H,Perring MP,Depauw L,De Lombaerde E,Landuyt D,De Frenne P,Verheyen K

    更新日期:2020-03-01 00:00:00

  • The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models.

    abstract::Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12890

    authors: Keenan TF,Richardson AD

    更新日期:2015-07-01 00:00:00

  • Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    abstract::Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, i...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13219

    authors: Averill C,Waring BG,Hawkes CV

    更新日期:2016-05-01 00:00:00

  • Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    abstract::Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14303

    authors: Pessarrodona A,Moore PJ,Sayer MDJ,Smale DA

    更新日期:2018-09-01 00:00:00

  • Will coral reef sponges be winners in the Anthropocene?

    abstract::Recent observations have shown that increases in climate change-related coral mortality cause changes in shallow coral reef community structure through phase shifts to alternative taxa. As a result, sponges have emerged as a potential candidate taxon to become a "winner," and therefore a numerically and functionally d...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15039

    authors: Lesser MP,Slattery M

    更新日期:2020-06-01 00:00:00

  • Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

    abstract::Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated wit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14731

    authors: Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

    更新日期:2019-10-01 00:00:00

  • Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    abstract::Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that...

    journal_title:Global change biology

    pub_type: 杂志文章,meta分析,评审

    doi:10.1111/gcb.12619

    authors: Strain EM,Thomson RJ,Micheli F,Mancuso FP,Airoldi L

    更新日期:2014-11-01 00:00:00

  • Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    abstract::Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiver...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13355

    authors: Boit A,Sakschewski B,Boysen L,Cano-Crespo A,Clement J,Garcia-Alaniz N,Kok K,Kolb M,Langerwisch F,Rammig A,Sachse R,van Eupen M,von Bloh W,Clara Zemp D,Thonicke K

    更新日期:2016-11-01 00:00:00

  • Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions.

    abstract::Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12374

    authors: Griepentrog M,Bodé S,Boeckx P,Hagedorn F,Heim A,Schmidt MW

    更新日期:2014-01-01 00:00:00

  • Vegetation growth enhancement in urban environments of the Conterminous United States.

    abstract::Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14317

    authors: Jia W,Zhao S,Liu S

    更新日期:2018-09-01 00:00:00

  • Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    abstract::Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological a...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.12916

    authors: Frank D,Reichstein M,Bahn M,Thonicke K,Frank D,Mahecha MD,Smith P,van der Velde M,Vicca S,Babst F,Beer C,Buchmann N,Canadell JG,Ciais P,Cramer W,Ibrom A,Miglietta F,Poulter B,Rammig A,Seneviratne SI,Walz A,Watte

    更新日期:2015-08-01 00:00:00

  • Warming alters coupled carbon and nutrient cycles in experimental streams.

    abstract::Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13205

    authors: Williamson TJ,Cross WF,Benstead JP,Gíslason GM,Hood JM,Huryn AD,Johnson PW,Welter JR

    更新日期:2016-06-01 00:00:00

  • A catchment-scale perspective of plastic pollution.

    abstract::Plastic pollution is distributed across the globe, but compared with marine environments, there is only rudimentary understanding of the distribution and effects of plastics in other ecosystems. Here, we review the transport and effects of plastics across terrestrial, freshwater and marine environments. We focus on hy...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.14572

    authors: Windsor FM,Durance I,Horton AA,Thompson RC,Tyler CR,Ormerod SJ

    更新日期:2019-01-21 00:00:00

  • Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens.

    abstract::Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13492

    authors: Burgess TI,Scott JK,Mcdougall KL,Stukely MJ,Crane C,Dunstan WA,Brigg F,Andjic V,White D,Rudman T,Arentz F,Ota N,Hardy GE

    更新日期:2017-04-01 00:00:00

  • Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    abstract::Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13300

    authors: Yue X,Keenan TF,Munger W,Unger N

    更新日期:2016-11-01 00:00:00

  • Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    abstract::Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not un...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12857

    authors: Bussière EM,Underhill LG,Altwegg R

    更新日期:2015-06-01 00:00:00

  • Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate.

    abstract::Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patt...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12230

    authors: Hultine KR,Burtch KG,Ehleringer JR

    更新日期:2013-11-01 00:00:00

  • Methane emission from feather moss stands.

    abstract::Data from remote sensing and Eddy towers indicate that forests are not always net sinks for atmospheric CH4 . However, studies describing specific sources within forests and functional analysis of microorganisms on sites with CH4 turnover are scarce. Feather moss stands were considered to be net sinks for carbon dioxi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13764

    authors: Kanaparthi D,Reim A,Martinson GO,Pommerenke B,Conrad R

    更新日期:2017-11-01 00:00:00

  • Testing for changes in biomass dynamics in large-scale forest datasets.

    abstract::Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above-ground biomass (EAGB) stocks, productivity, and mortality in old-growth tropical forests. These increases could reflect a shift in forest functio...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14833

    authors: Rutishauser E,Wright SJ,Condit R,Hubbell SP,Davies SJ,Muller-Landau HC

    更新日期:2020-03-01 00:00:00

  • Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    abstract::Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture lo...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13122

    authors: Melaas EK,Friedl MA,Richardson AD

    更新日期:2016-02-01 00:00:00

  • Mortality events resulting from Australia's catastrophic fires threaten aquatic biota.

    abstract::The consequences of the 2019-2020 bushfires in Australia were also devastating for the aquatic biota. Following abnormal rainfall events in burnt areas, widespread mortality events including fish and invertebrates were recorded in estuarine and freshwater systems. Such negative impacts on aquatic resources highlight t...

    journal_title:Global change biology

    pub_type: 信件

    doi:10.1111/gcb.15282

    authors: Silva LGM,Doyle KE,Duffy D,Humphries P,Horta A,Baumgartner LJ

    更新日期:2020-10-01 00:00:00

  • Declining glacier cover threatens the biodiversity of alpine river diatom assemblages.

    abstract::Climate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold-water river systems that are responding rapidly to a shrinking cryosphere. Most recent research has demonstrated the severe vulnerability of river invertebrates to glacier retreat but effects upon other...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14454

    authors: Fell SC,Carrivick JL,Kelly MG,Füreder L,Brown LE

    更新日期:2018-12-01 00:00:00