Functions of microRNAs in plant stress responses.

Abstract:

:The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. miRNAs have emerged as master regulators of plant growth and development. Evidence suggesting that miRNAs play a role in plant stress responses arises from the discovery that miR398 targets genes with known roles in stress tolerance. In addition, the expression profiles of most miRNAs that are implicated in plant growth and development are significantly altered during stress. These later findings imply that attenuated plant growth and development under stress may be under the control of stress-responsive miRNAs. Here we review recent progress in the understanding of miRNA-mediated plant stress tolerance.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Sunkar R,Li YF,Jagadeeswaran G

doi

10.1016/j.tplants.2012.01.010

subject

Has Abstract

pub_date

2012-04-01 00:00:00

pages

196-203

issue

4

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(12)00026-X

journal_volume

17

pub_type

杂志文章,评审
  • When no means no: guide to Brassicaceae self-incompatibility.

    abstract::More than half of the flowering plants have a sophisticated mechanism for self-pollen rejection, named self-incompatibility (SI). In Brassicaceae, recognition specificity is achieved by the interaction of the stigmatic S-RECEPTOR KINASE (SRK) and its ligand S-LOCUS CYSTEINE-RICH PROTEIN (SCR). Recent years have seen s...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.04.010

    authors: Ivanov R,Fobis-Loisy I,Gaude T

    更新日期:2010-07-01 00:00:00

  • Identifying the molecular basis of QTLs: eQTLs add a new dimension.

    abstract::Natural genetic variation within plant species is at the core of plant science ranging from agriculture to evolution. Whereas much progress has been made in mapping quantitative trait loci (QTLs) controlling this natural variation, the elucidation of the underlying molecular mechanisms has remained a bottleneck. Recen...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.11.008

    authors: Hansen BG,Halkier BA,Kliebenstein DJ

    更新日期:2008-02-01 00:00:00

  • TCP three-way handshake: linking developmental processes with plant immunity.

    abstract::The TCP gene family encodes plant-specific transcription factors involved in growth and development. Equally important are the interactions between TCP factors and other pathways extending far beyond development, as they have been found to regulate a variety of hormonal pathways and signaling cascades. Recent advances...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.01.005

    authors: Lopez JA,Sun Y,Blair PB,Mukhtar MS

    更新日期:2015-04-01 00:00:00

  • Abiotic stress, the field environment and stress combination.

    abstract::Farmers and breeders have long known that often it is the simultaneous occurrence of several abiotic stresses, rather than a particular stress condition, that is most lethal to crops. Surprisingly, the co-occurrence of different stresses is rarely addressed by molecular biologists that study plant acclimation. Recent ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.11.002

    authors: Mittler R

    更新日期:2006-01-01 00:00:00

  • Engineering crassulacean acid metabolism to improve water-use efficiency.

    abstract::Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this tempora...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2014.01.006

    authors: Borland AM,Hartwell J,Weston DJ,Schlauch KA,Tschaplinski TJ,Tuskan GA,Yang X,Cushman JC

    更新日期:2014-05-01 00:00:00

  • The 14-3-3 proteins: cellular regulators of plant metabolism.

    abstract::Signal transduction and enzyme regulation are known to occur via phosphorylation, but it is becoming increasingly apparent that phosphorylation might be only a necessary preamble to regulation. In many cases, the phosphorylated target protein must associate with a specialized adapter protein, known as 14-3-3, to compl...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01462-4

    authors: Chung HJ,Sehnke PC,Ferl RJ

    更新日期:1999-09-01 00:00:00

  • Maize and sorghum: genetic resources for bioenergy grasses.

    abstract::The highly photosynthetic-efficient C4 grasses, such as switchgrass (Panicum virgatum), Miscanthus (Miscanthusxgiganteus), sorghum (Sorghum bicolor) and maize (Zea mays), are expected to provide abundant and sustainable resources of lignocellulosic biomass for the production of biofuels. A deeper understanding of the ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2008.06.002

    authors: Carpita NC,McCann MC

    更新日期:2008-08-01 00:00:00

  • Manipulators live better, but are they always parasites?

    abstract::A recent study reports partner manipulation for an interaction that was considered a reward-for-defence mutualism. Secretions of lycaenid caterpillars altered ant locomotion and aggressiveness, likely by manipulating dopaminergic signalling. This study opens the question whether such manipulation is common and whether...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2015.08.001

    authors: Heil M

    更新日期:2015-09-01 00:00:00

  • Soil Biodiversity Effects from Field to Fork.

    abstract::Our knowledge of soil biodiversity in agriculture in general is currently increasing rapidly. However, almost all studies have stopped with the quantification of soil biodiversity effects on crops at harvest time, ignoring subsequent processes along the agrifood chain until food arrives on our plates. Here we develop ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.10.003

    authors: Rillig MC,Lehmann A,Lehmann J,Camenzind T,Rauh C

    更新日期:2018-01-01 00:00:00

  • Symbiotic phosphate transport in arbuscular mycorrhizas.

    abstract::Arbuscular mycorrhizal fungi colonize the root systems of most land plants and modulate plant growth by enhancing the availability of nutrients, mainly phosphorus, for plant nutrition. Recently identified genes encoding mycorrhiza-specific plant phosphate transporters have enabled fundamental problems in arbuscular my...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2004.12.003

    authors: Karandashov V,Bucher M

    更新日期:2005-01-01 00:00:00

  • Light signaling: back to space.

    abstract::Recent work has increased our understanding of the molecular and cellular mechanisms of the phytochrome family of photoreceptors in controlling plant photomorphogenesis. However, the importance of long-distance communication in controlling light responses has received relatively little attention and is poorly understo...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.12.003

    authors: Bou-Torrent J,Roig-Villanova I,Martínez-García JF

    更新日期:2008-03-01 00:00:00

  • Leveraging metabolomics for functional investigations in sequenced marine diatoms.

    abstract::Recent years have witnessed the genomic decoding of a wide range of photosynthetic organisms from the model plant Arabidopsis thaliana and the complex genomes of important crop species to single-celled marine phytoplankton. The comparative sequencing of green, red and brown algae has provided considerable insight into...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.005

    authors: Fernie AR,Obata T,Allen AE,Araújo WL,Bowler C

    更新日期:2012-07-01 00:00:00

  • Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond.

    abstract::Many hermaphrodite flowering plants avoid self-fertilization through genetic systems of self-incompatibility (SI). SI allows a plant to recognize and to reject self or self-related pollen, thereby preserving its ovules for outcrossing. Genes situated at the S-locus encode the 'male' (pollen) and 'female' (pistil) reco...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2003.10.007

    authors: Hiscock SJ,McInnis SM

    更新日期:2003-12-01 00:00:00

  • Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    abstract::Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth an...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2016.12.006

    authors: de Vries J,Evers JB,Poelman EH

    更新日期:2017-04-01 00:00:00

  • The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    abstract::Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), asso...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.03.004

    authors: Cavagnaro TR,Bender SF,Asghari HR,Heijden MGAV

    更新日期:2015-05-01 00:00:00

  • Waxy Editing: Old Meets New.

    abstract::The Waxy (Wx) gene that governs amylose synthesis is an old but widely used target in improving the quality of starchy crops. New genome-editing strategies are being deployed to create beneficial Wx alleles with finely tuned amylose content (AC). Precise targeting must be combined with traditional approaches to develo...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2020.07.009

    authors: Huang L,Sreenivasulu N,Liu Q

    更新日期:2020-10-01 00:00:00

  • Evolution of root endosymbiosis with bacteria: How novel are nodules?

    abstract::Plants form diverse symbioses with nitrogen-fixing bacteria to gain access to ammonium, a product of the prokaryote-exclusive enzyme nitrogenase. Improving the symbiotic effectiveness of crop plants like maize, wheat or rice is a highly topical challenge and could help reduce the need for energy-intense nitrogen ferti...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2008.11.009

    authors: Markmann K,Parniske M

    更新日期:2009-02-01 00:00:00

  • NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants?

    abstract::Polyamines, such as spermine, spermidine and putrescine, are ubiquitous polycationic compounds that are produced by almost all living organisms, including plants, animals, fungi and bacteria. Polyamines are multifunctional and interact with polyanionic biomolecules such as DNA or protein. However, despite their potent...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2006.09.009

    authors: Yamasaki H,Cohen MF

    更新日期:2006-11-01 00:00:00

  • RNA 'Information Warfare' in Pathogenic and Mutualistic Interactions.

    abstract::Regulatory non-coding RNAs are emerging as key players in host-pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading pathogens and pests. ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2016.05.008

    authors: Chaloner T,van Kan JAL,Grant-Downton RT

    更新日期:2016-09-01 00:00:00

  • siRNAs and DNA methylation: seedy epigenetics.

    abstract::To understand how DNA sequence is translated to phenotype we must understand the epigenetic features that regulate gene expression. Recent research illuminates the complex interactions between DNA methylation, small RNAs, silencing of transposable elements, and genomic imprinting in the Arabidopsis (Arabidopsis thalia...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.01.002

    authors: Mosher RA,Melnyk CW

    更新日期:2010-04-01 00:00:00

  • Small Millets for Enduring Food Security Amidst Pandemics.

    abstract::Food security is an ongoing problem, and current staple foods are not sufficient to overcome challenges such as the present COVID-19 pandemic. We propose here that small millets have the potential to become new staple crops, especially in hunger hotspots. Currently, the absence of intensification of millet farming, la...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2020.08.008

    authors: Muthamilarasan M,Prasad M

    更新日期:2021-01-01 00:00:00

  • Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation.

    abstract::Chloroplasts and mitochondria are traditionally considered to be autonomous organelles but they are not as independent as they were once thought to be. Mitochondrial metabolism, particularly the bioenergetic reactions of oxidative electron transport and phosphorylation, continue to be active in the light and are essen...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2003.09.015

    authors: Raghavendra AS,Padmasree K

    更新日期:2003-11-01 00:00:00

  • PIF3 Integrates Light and Low Temperature Signaling.

    abstract::PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) is a basic ​helix-loop-helix transcription factor with critical roles in light signaling. Recent work identified PIF3 as a negative regulator of arabidopsis (Arabidopsis thaliana) freezing tolerance. ...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2017.12.003

    authors: Lin L,Liu X,Yin R

    更新日期:2018-02-01 00:00:00

  • Revealing micro-RNAs in plants.

    abstract::Recent work has resulted in the identification of >100 endogenous non-coding small RNA molecules in plants. These micro-RNAs (miRNAs) have the capacity to regulate a range of predicted target mRNAs, many of which are transcription factors involved in the control of meristem identity. Mutants defective in either CARPEL...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(02)02361-0

    authors: Jones L

    更新日期:2002-11-01 00:00:00

  • Interview with Heribert Hirt.

    abstract::As a son of an engineer who traveled widely during his career, Heribert Hirt began his life in the exotic country of Iran, before receiving his high-school education in Germany and then studying biochemistry at the University of Cape Town and then later at the University of Vienna, from where he received his PhD in 19...

    journal_title:Trends in plant science

    pub_type: 传,历史文章,面试

    doi:10.1016/j.tplants.2015.11.007

    authors: Hirt H

    更新日期:2016-01-01 00:00:00

  • MAPK cascades in plant defense signaling.

    abstract::The Arabidopsis genome encodes approximately 20 different mitogen-activated protein kinases (MAPKs) that are likely to be involved in growth, development and responses to endogenous and environmental cues. Several plant MAPKs are activated by a variety of stress stimuli, including pathogen infection, wounding, tempera...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)02103-3

    authors: Zhang S,Klessig DF

    更新日期:2001-11-01 00:00:00

  • Local Auxin Biosynthesis Mediates Plant Growth and Development.

    abstract::Auxin is one of the most important plant hormones controlling various aspects of plant growth and development. Here, we highlight three recent papers that shed light on how local auxin biosynthesis contributes to plant growth and development in response to endogenous developmental signals and exogenous environmental c...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2018.10.014

    authors: Lv B,Yan Z,Tian H,Zhang X,Ding Z

    更新日期:2019-01-01 00:00:00

  • Paradoxical EU agricultural policies on genetically engineered crops.

    abstract::European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2013.03.004

    authors: Masip G,Sabalza M,Pérez-Massot E,Banakar R,Cebrian D,Twyman RM,Capell T,Albajes R,Christou P

    更新日期:2013-06-01 00:00:00

  • From central-peripheral to adaxial-abaxial.

    abstract::Higher plants are constructed of three organs--the stem, the root and the leaf. The stem and the root have two axes, apical-basal and central-peripheral, which cross orthogonally. Leaves develop from the shoot apical meristem as lateral organs that have three different axes, apical-basal, adaxial-abaxial and right-lef...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)02155-0

    authors: Tasaka M

    更新日期:2001-12-01 00:00:00

  • How is FLC repression initiated by cold?

    abstract::Vernalization is the promotion of flowering in response to prolonged exposure to low temperatures. In Arabidopsis, FLOWERING LOCUS C (FLC), a suppressor of flowering, is repressed by low temperatures but the mechanism leading to the initial decrease in FLC transcription remains a mystery. No mutants that block the rep...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2014.12.004

    authors: Helliwell CA,Anderssen RS,Robertson M,Finnegan EJ

    更新日期:2015-02-01 00:00:00