Extracting wave structure from biological data with application to responses in turtle visual cortex.

Abstract:

:Waves have long been thought to be a fundamental mechanism for communicating information within a medium and are widely observed in biological systems. However, a quantitative analysis of biological waves is confounded by the variability and complexity of the response. This paper proposes a robust technique for extracting wave structure from experimental data by calculating "wave subspaces" from the KL decomposition of the data set. If a wave subspace contains a substantial portion of the data set energy during a particular time interval, one can deduce the structure of the wave and potentially isolate its information content. This paper uses the wave subspace technique to extract and compare wave structure in data from three different preparations of the turtle visual cortex. The paper demonstrates that wave subspace caricatures from the three cortical preparations have qualitative similarities. In the numerical model, where information about the underlying dynamics is available, wave subspace landmarks are related to activation and changes in behavior of other dynamic variables besides membrane potential.

journal_name

J Comput Neurosci

authors

Robbins KA,Senseman DM

doi

10.1023/B:JCNS.0000025689.01581.26

subject

Has Abstract

pub_date

2004-05-01 00:00:00

pages

267-98

issue

3

eissn

0929-5313

issn

1573-6873

pii

5273095

journal_volume

16

pub_type

杂志文章
  • Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect.

    abstract::In inactive stick insects, sensory information from the femoral chordotonal organ (fCO) about position and movement of the femur-tibia joint is transferred via local nonspiking interneurons onto extensor and flexor tibiae motoneurons. Information is processed by the interaction of antagonistic parallel pathways at two...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00161131

    authors: Sauer AE,Driesang RB,Büschges A,Bässler U

    更新日期:1996-09-01 00:00:00

  • A probabilistic method for determining cortical dynamics during seizures.

    abstract::This work presents a probabilistic method for inferring the parameter ranges in a biologically relevant mathematical model of the cortex most likely to be producing seizures observed in an electrocorticogram (ECoG) signal from a human subject. Additionally, this method produces a probabilistic pathway of the temporal ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0554-8

    authors: Dadok VM,Kirsch HE,Sleigh JW,Lopour BA,Szeri AJ

    更新日期:2015-06-01 00:00:00

  • Computational simulation of the input-output relationship in hippocampal pyramidal cells.

    abstract::The precise mapping of how complex patterns of synaptic inputs are integrated into specific patterns of spiking output is an essential step in the characterization of the cellular basis of network dynamics and function. Relative to other principal neurons of the hippocampus, the electrophysiology of CA1 pyramidal cell...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-8797-z

    authors: Li X,Ascoli GA

    更新日期:2006-10-01 00:00:00

  • Modeling the influence of optic flow on grid cell firing in the absence of other cues1.

    abstract::Information from the vestibular, sensorimotor, or visual systems can affect the firing of grid cells recorded in entorhinal cortex of rats. Optic flow provides information about the rat's linear and rotational velocity and, thus, could influence the firing pattern of grid cells. To investigate this possible link, we m...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-012-0396-6

    authors: Raudies F,Mingolla E,Hasselmo ME

    更新日期:2012-12-01 00:00:00

  • Disrupted cholinergic modulation can underlie abnormal gamma rhythms in schizophrenia and auditory hallucination.

    abstract::The pathophysiology of auditory hallucination, a common symptom of schizophrenia, has yet been understood, but during auditory hallucination, primary auditory cortex (A1) shows paradoxical responses. When auditory stimuli are absent, A1 becomes hyperactive, while A1 responses to auditory stimuli are reduced. Such acti...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-017-0666-4

    authors: Lee JH

    更新日期:2017-12-01 00:00:00

  • Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model.

    abstract::Many mechanisms of neural processing rely critically upon the synaptic connectivity between neurons. As our ability to simultaneously record from large populations of neurons expands, the ability to infer network connectivity from this data has become a major goal of computational neuroscience. To address this issue, ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0443-y

    authors: Kobayashi R,Kitano K

    更新日期:2013-08-01 00:00:00

  • Analyzing multiple spike trains with nonparametric Granger causality.

    abstract::Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0126-2

    authors: Nedungadi AG,Rangarajan G,Jain N,Ding M

    更新日期:2009-08-01 00:00:00

  • Lyapunov exponents computation for hybrid neurons.

    abstract::Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neuron...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0448-6

    authors: Bizzarri F,Brambilla A,Gajani GS

    更新日期:2013-10-01 00:00:00

  • Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media : EEG and MEG power spectra.

    abstract::The resistive or non-resistive nature of the extracellular space in the brain is still debated, and is an important issue for correctly modeling extracellular potentials. Here, we first show theoretically that if the medium is resistive, the frequency scaling should be the same for electroencephalogram (EEG) and magne...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0252-5

    authors: Dehghani N,Bédard C,Cash SS,Halgren E,Destexhe A

    更新日期:2010-06-17 00:00:00

  • The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties.

    abstract::The voltage-gated currents in the fly lobula plate tangential cells were examined using the switched electrode voltage clamp technique. In CH cells, two currents were identified (Figs. 1, 2): a slow calcium inward current and a delayed rectifying, noninactivating potassium outward current. HS and VS cells appear to po...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008804117334

    authors: Haag J,Theunissen F,Borst A

    更新日期:1997-11-01 00:00:00

  • Firing-rate models capture essential response dynamics of LGN relay cells.

    abstract::Firing-rate models provide a practical tool for studying signal processing in the early visual system, permitting more thorough mathematical analysis than spike-based models. We show here that essential response properties of relay cells in the lateral geniculate nucleus (LGN) can be captured by surprisingly simple fi...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0456-6

    authors: Heiberg T,Kriener B,Tetzlaff T,Casti A,Einevoll GT,Plesser HE

    更新日期:2013-12-01 00:00:00

  • The response of a classical Hodgkin-Huxley neuron to an inhibitory input pulse.

    abstract::A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30-80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchron...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0233-8

    authors: Börgers C,Krupa M,Gielen S

    更新日期:2010-06-01 00:00:00

  • A minimum-error, energy-constrained neural code is an instantaneous-rate code.

    abstract::Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance en...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-016-0592-x

    authors: Johnson EC,Jones DL,Ratnam R

    更新日期:2016-04-01 00:00:00

  • Two-cell to N-cell heterogeneous, inhibitory networks: precise linking of multistable and coherent properties.

    abstract::Inhibitory networks are now recognized as being the controllers of several brain rhythms. However, experimental work with inhibitory cells is technically difficult not only because of their smaller percentage of the neuronal population, but also because of their diverse properties. As such, inhibitory network models w...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-0331-1

    authors: Skinner FK,Bazzazi H,Campbell SA

    更新日期:2005-06-01 00:00:00

  • System identification of Drosophila olfactory sensory neurons.

    abstract::The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation f...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0265-0

    authors: Kim AJ,Lazar AA,Slutskiy YB

    更新日期:2011-02-01 00:00:00

  • Generation of very slow neuronal rhythms and chaos near the Hopf bifurcation in single neuron models.

    abstract::We have presented a new generation mechanism of slow spiking or repetitive discharges with extraordinarily long inter-spike intervals using the modified Hodgkin-Huxley equations (Doi and Kumagai, 2001). This generation process of slow firing is completely different from that of the well-known potassium A-current in th...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-2895-1

    authors: Doi S,Kumagai S

    更新日期:2005-12-01 00:00:00

  • Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations.

    abstract::Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and theoretically. However, whether...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-019-00710-y

    authors: Bel A,Rotstein HG

    更新日期:2019-04-01 00:00:00

  • Testing for significance of phase synchronisation dynamics in the EEG.

    abstract::A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a consta...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-012-0428-2

    authors: Daly I,Sweeney-Reed CM,Nasuto SJ

    更新日期:2013-06-01 00:00:00

  • Virtual Retina: a biological retina model and simulator, with contrast gain control.

    abstract::We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underl...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0108-4

    authors: Wohrer A,Kornprobst P

    更新日期:2009-04-01 00:00:00

  • Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise.

    abstract::A neuron receives input from other neurons via electrical pulses, so-called spikes. The pulse-like nature of the input is frequently neglected in analytical studies; instead, the input is usually approximated to be Gaussian. Recent experimental studies have shown, however, that an assumption underlying this approximat...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-017-0649-5

    authors: Droste F,Lindner B

    更新日期:2017-08-01 00:00:00

  • New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.

    abstract::During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to pl...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-017-0663-7

    authors: Komarov M,Krishnan G,Chauvette S,Rulkov N,Timofeev I,Bazhenov M

    更新日期:2018-02-01 00:00:00

  • Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons.

    abstract::In the compensatory optomotor response of the fly the interesting phenomenon of gain control has been observed by Reichardt and colleagues (Reichardt et al., 1983): The amplitude of the response tends to saturate with increasing stimulus size, but different saturation plateaus are assumed with different velocities at ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00962705

    authors: Borst A,Egelhaaf M,Haag J

    更新日期:1995-03-01 00:00:00

  • Quadratic sinusoidal analysis of voltage clamped neurons.

    abstract::Nonlinear biophysical properties of individual neurons are known to play a major role in the nervous system, especially those active at subthreshold membrane potentials that integrate synaptic inputs during action potential initiation. Previous electrophysiological studies have made use of a piecewise linear character...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-011-0325-0

    authors: Magnani C,Moore LE

    更新日期:2011-11-01 00:00:00

  • Initiation and propagation of a neuronal intracellular calcium wave.

    abstract::The ability to image calcium movement within individual neurons inspires questions of functionality including whether calcium entry into the nucleus is related to genetic regulation for phenomena such as long term potentiation. Calcium waves have been initiated in hippocampal pyramidal cells with glutmatergic signals ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0082-x

    authors: Peercy BE

    更新日期:2008-10-01 00:00:00

  • Simulation of gamma rhythms in networks of interneurons and pyramidal cells.

    abstract::Networks of hippocampal interneurons, with pyramidal neurons pharmacologically disconnected, can generate gamma-frequency (20 Hz and above) oscillations. Experiments and models have shown how the network frequency depends on excitation of the interneurons, and on the parameters of GABAA-mediated IPSCs between the inte...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008839312043

    authors: Traub RD,Jefferys JG,Whittington MA

    更新日期:1997-04-01 00:00:00

  • Effect of non-symmetric waveform on conduction block induced by high-frequency (kHz) biphasic stimulation in unmyelinated axon.

    abstract::The effect of a non-symmetric waveform on nerve conduction block induced by high-frequency biphasic stimulation is investigated using a lumped circuit model of the unmyelinated axon based on Hodgkin-Huxley equations. The simulation results reveal that the block threshold monotonically increases with the stimulation fr...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0510-z

    authors: Zhao S,Yang G,Wang J,Roppolo JR,de Groat WC,Tai C

    更新日期:2014-10-01 00:00:00

  • Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    abstract::Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-011-0378-0

    authors: Castro L,Aguiar P

    更新日期:2012-08-01 00:00:00

  • Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron.

    abstract::An analytical model is proposed that can predict the shape of the poststimulus time histogram (PSTH) response to a current pulse of a neuron subjected to uncorrelated background input. The model is based on an explicit description of noise in the form of an escape rate and corresponding hazard function. Two forms of t...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1012841516004

    authors: Herrmann A,Gerstner W

    更新日期:2001-09-01 00:00:00

  • Spiking neural circuits with dendritic stimulus processors : encoding, decoding, and identification in reproducing kernel Hilbert spaces.

    abstract::We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0522-8

    authors: Lazar AA,Slutskiy YB

    更新日期:2015-02-01 00:00:00

  • Calcium control of triphasic hippocampal STDP.

    abstract::Synaptic plasticity is believed to represent the neural correlate of mammalian learning and memory function. It has been demonstrated that changes in synaptic conductance can be induced by approximately synchronous pairings of pre- and post- synaptic action potentials delivered at low frequencies. It has also been est...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-012-0397-5

    authors: Bush D,Jin Y

    更新日期:2012-12-01 00:00:00