The Arabidopsis RRS1-R disease resistance gene--uncovering the plant's nucleus as the new battlefield of plant defense?

Abstract:

:The isolation of over 30 plant disease-resistance genes revealed that most genes encode putatively cytoplasmic proteins with a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR). However, the recent isolation of the Arabidopsis RRS1-R gene has uncovered a novel NBS-LRR subtype that harbors a C-terminal extension with a putative nuclear localization signal and a DNA-binding domain that is characteristic of the WRKY transcription factor family. This suggests that RRS1-R, unlike any other known R protein, is targeted to the nucleus to fulfill its function.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Lahaye T

doi

10.1016/s1360-1385(02)02334-8

subject

Has Abstract

pub_date

2002-10-01 00:00:00

pages

425-7

issue

10

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(02)02334-8

journal_volume

7

pub_type

新闻
  • Symbiotically modified organisms: nontoxic fungal endophytes in grasses.

    abstract::We propose that symbiotically modified organisms (SMOs) should be taken into account in sustainable agriculture. In this opinion article, we present the results of a meta-analysis of the literature, with a particular focus on the potential of SMOs in forage and turf grass production, to determine the impact of endophy...

    journal_title:Trends in plant science

    pub_type: 杂志文章,meta分析

    doi:10.1016/j.tplants.2013.03.003

    authors: Gundel PE,Pérez LI,Helander M,Saikkonen K

    更新日期:2013-08-01 00:00:00

  • Phylloplane proteins: emerging defenses at the aerial frontline?

    abstract::The phylloplane, or leaf surface, is an interkingdom crossroads between plants and microorganisms, and secretion of antimicrobial biochemicals to aerial surfaces is thought to be one defensive strategy by which plants deter potential pathogens. Secondary metabolites on leaf surfaces are well documented but antimicrobi...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.12.003

    authors: Shepherd RW,Wagner GJ

    更新日期:2007-02-01 00:00:00

  • RNA silencing and its suppression: novel insights from in planta analyses.

    abstract::Plants employ multiple layers of innate immunity to fight pathogens. For both RNA and DNA viruses, RNA silencing plays a critical role in plant resistance. To escape this antiviral silencing-based immune response, viruses have evolved various counterdefense strategies, the most widespread being production of viral sup...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2013.04.001

    authors: Incarbone M,Dunoyer P

    更新日期:2013-07-01 00:00:00

  • Identifying the molecular basis of QTLs: eQTLs add a new dimension.

    abstract::Natural genetic variation within plant species is at the core of plant science ranging from agriculture to evolution. Whereas much progress has been made in mapping quantitative trait loci (QTLs) controlling this natural variation, the elucidation of the underlying molecular mechanisms has remained a bottleneck. Recen...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.11.008

    authors: Hansen BG,Halkier BA,Kliebenstein DJ

    更新日期:2008-02-01 00:00:00

  • Short on phosphate: plant surveillance and countermeasures.

    abstract::Metabolism depends on inorganic phosphate (P(i)) as reactant, allosteric effector and regulatory moiety in covalent protein modification. To cope with P(i) shortage (a common situation in many ecosystems), plants activate a set of adaptive responses to enhance P(i) recycling and acquisition by reprogramming metabolism...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.09.003

    authors: Ticconi CA,Abel S

    更新日期:2004-11-01 00:00:00

  • Recent Advances in Arabidopsis CLE Peptide Signaling.

    abstract::Like communities of people, communities of cells must continuously communicate to thrive. Polypeptide signaling molecules that act as mobile ligands are widely used by eukaryotic organisms to transmit information between cells to coordinate developmental processes and responses to environmental cues. In plants, the CL...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2020.04.014

    authors: Fletcher JC

    更新日期:2020-10-01 00:00:00

  • The relationship between metal toxicity and cellular redox imbalance.

    abstract::The relationship between cellular redox imbalances leading to oxidative stress and metal toxicity in plants has been studied intensely over the past decades. This interdependency was often considered to reflect a rather indirect metal effect of cellular disregulation and progressive secondary damage development. By co...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2008.10.007

    authors: Sharma SS,Dietz KJ

    更新日期:2009-01-01 00:00:00

  • Arabidopsis PPP family of serine/threonine phosphatases.

    abstract::Serine/threonine-specific phosphoprotein phosphatases (PPPs) are ubiquitous enzymes in all eukaryotes, but their regulatory functions are largely unknown in higher plants. The Arabidopsis genome encodes 26 PPP catalytic subunits related to type 1, type 2A and so-called novel phosphatases, including four plant-specific...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.03.003

    authors: Farkas I,Dombrádi V,Miskei M,Szabados L,Koncz C

    更新日期:2007-04-01 00:00:00

  • Plant evolution: AGC kinases tell the auxin tale.

    abstract::The signaling molecule auxin is a central regulator of plant development, which instructs tissue and organ patterning, and couples environmental stimuli to developmental responses. Here, we discuss the function of PINOID (PID) and the phototropins, members of the plant specific AGCVIII protein kinases, and their role ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2007.10.004

    authors: Galván-Ampudia CS,Offringa R

    更新日期:2007-12-01 00:00:00

  • Tall tales from sly dwarves: novel functions of gibberellins in plant development.

    abstract::Gibberellins (GAs) are endogenous hormones controlling numerous aspects of plant growth and development. Our present understanding of GA physiology is based largely on genetic analysis in model plants such as Arabidopsis. In spite of the success of this approach, the discovery of additional physiological roles for GAs...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.01.007

    authors: Swain SM,Singh DP

    更新日期:2005-03-01 00:00:00

  • Novel Stress in Plants by Altering the Photoperiod.

    abstract::Recent work has shown that changing the photoperiod induces stress in Arabidopsis thaliana. It has particularly dramatic consequences in cytokinin-deficient plants and clock mutants. Here, we argue that studying the impact of an altered photoperiod will provide novel insights into the circadian clock, factors regulati...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2017.09.005

    authors: Nitschke S,Cortleven A,Schmülling T

    更新日期:2017-11-01 00:00:00

  • MAPK cascades in plant defense signaling.

    abstract::The Arabidopsis genome encodes approximately 20 different mitogen-activated protein kinases (MAPKs) that are likely to be involved in growth, development and responses to endogenous and environmental cues. Several plant MAPKs are activated by a variety of stress stimuli, including pathogen infection, wounding, tempera...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)02103-3

    authors: Zhang S,Klessig DF

    更新日期:2001-11-01 00:00:00

  • Developmental biology of the cereal endosperm.

    abstract::The recent application of immunohistochemistry and molecular techniques has revealed that endosperm development depends on a genetic program that combines an ancient process for cellularization (similar to that seen in late Paleozoic seed ferns) with a mechanism for specifying asymmetric cell fates that has parallels ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01431-4

    authors: Olsen OA,Linnestad C,Nichols SE

    更新日期:1999-07-01 00:00:00

  • Plant infection and the establishment of fungal biotrophy.

    abstract::To exploit plants as living substrates, biotrophic fungi have evolved remarkable variations of their tubular cells, the hyphae. They form infection structures such as appressoria, penetration hyphae and infection hyphae to invade the plant with minimal damage to host cells. To establish compatibility with the host, co...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(02)02297-5

    authors: Mendgen K,Hahn M

    更新日期:2002-08-01 00:00:00

  • Plant innate immunity--sunny side up?

    abstract::Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelle's importance in immunity has ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2014.10.002

    authors: Stael S,Kmiecik P,Willems P,Van Der Kelen K,Coll NS,Teige M,Van Breusegem F

    更新日期:2015-01-01 00:00:00

  • Source to sink: regulation of carotenoid biosynthesis in plants.

    abstract::Carotenoids are a diverse group of colourful pigments naturally found in plants, algae, fungi and bacteria. They play essential roles in development, photosynthesis, root-mycorrhizal interactions and the production of phytohormones, such as abscisic acid and strigolactone. Carotenoid biosynthesis is regulated througho...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.02.003

    authors: Cazzonelli CI,Pogson BJ

    更新日期:2010-05-01 00:00:00

  • Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2.

    abstract::Elucidation of the molecular basis of gene-for-gene interactions between disease-resistance (R) genes and pathogen avirulence (avr) genes has been a Holy Grail of plant pathology for the past decade. Recent studies of the R-avr interaction between RRS1-R and popP2 by Laurent Deslandes et al. provide new insights and s...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2003.11.002

    authors: Lahaye T

    更新日期:2004-01-01 00:00:00

  • Photosynthesis Optimized across Land Plant Phylogeny.

    abstract::Until recently, few data were available on photosynthesis and its underlying mechanistically limiting factors in plants, other than crops and model species. Currently, a new large pool of data from extant representatives of basal terrestrial plant groups is emerging, allowing exploration of how photosynthetic capacity...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2019.07.002

    authors: Gago J,Carriquí M,Nadal M,Clemente-Moreno MJ,Coopman RE,Fernie AR,Flexas J

    更新日期:2019-10-01 00:00:00

  • Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation.

    abstract::Chloroplasts and mitochondria are traditionally considered to be autonomous organelles but they are not as independent as they were once thought to be. Mitochondrial metabolism, particularly the bioenergetic reactions of oxidative electron transport and phosphorylation, continue to be active in the light and are essen...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2003.09.015

    authors: Raghavendra AS,Padmasree K

    更新日期:2003-11-01 00:00:00

  • Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?

    abstract::A serious factor limiting the engineering of stress tolerance has been our ignorance about the function of stress-induced genes. A stress-activated novel aldose-aldehyde reductase was cloned from alfalfa. The ectopic expression of this gene in tobacco resulted in tolerance to oxidative stress and dehydration. Physiolo...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)01983-5

    authors: Bartels D

    更新日期:2001-07-01 00:00:00

  • JAZing up jasmonate signaling.

    abstract::Recent discoveries show that jasmonate ZIM-domain (JAZ) transcriptional repressors are key regulators of jasmonate hormonal response. Jasmonate promotes interaction between JAZ proteins and the SCF(COI1) ubiquitin ligase, leading to JAZ degradation via the 26S proteasome in Arabidopsis thaliana. Elimination of JAZ rep...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.11.011

    authors: Staswick PE

    更新日期:2008-02-01 00:00:00

  • Plant stem cells carve their own niche.

    abstract::Stem cells are the precursors of differentiated cells and are, thus, indispensable for growth and development in plants and animals. Stem cells from both types of organisms share the fundamental features of a capacity for self-renewal and an ability to generate differentiated cells. The maintenance of stem cells in bo...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.03.004

    authors: Singh MB,Bhalla PL

    更新日期:2006-05-01 00:00:00

  • Plant-derived pharmaceuticals--the road forward.

    abstract::Plant-derived pharmaceuticals are poised to become the next major commercial development in biotechnology. The advantages they offer in terms of production scale and economy, product safety, ease of storage and distribution cannot be matched by any current commercial system; they also provide the most promising opport...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.10.009

    authors: Ma JK,Chikwamba R,Sparrow P,Fischer R,Mahoney R,Twyman RM

    更新日期:2005-12-01 00:00:00

  • Sugar transporters in higher plants--a diversity of roles and complex regulation.

    abstract::Sugar-transport proteins play a crucial role in the cell-to-cell and long-distance distribution of sugars throughout the plant. In the past decade, genes encoding sugar transporters (or carriers) have been identified, functionally expressed in heterologous systems, and studied with respect to their spatial and tempora...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01681-2

    authors: Williams LE,Lemoine R,Sauer N

    更新日期:2000-07-01 00:00:00

  • GATEWAY vectors for Agrobacterium-mediated plant transformation.

    abstract::Agrobacterium tumefaciens is the preferred method for transformation of a wide range of plant species. Commonly, the genes to be transferred are cloned between the left and right T-DNA borders of so-called binary T-DNA vectors that can replicate both in E. coli and Agrobacterium. Because these vectors are generally la...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(02)02251-3

    authors: Karimi M,Inzé D,Depicker A

    更新日期:2002-05-01 00:00:00

  • The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    abstract::Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), asso...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.03.004

    authors: Cavagnaro TR,Bender SF,Asghari HR,Heijden MGAV

    更新日期:2015-05-01 00:00:00

  • Woody Plant Declines. What's Wrong with the Microbiome?

    abstract::Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2019.12.024

    authors: Bettenfeld P,Fontaine F,Trouvelot S,Fernandez O,Courty PE

    更新日期:2020-04-01 00:00:00

  • Dissecting calcium oscillators in plant cells.

    abstract::To understand Ca2+ signaling, we need to identify all the Ca2+ transporters and their regulatory components. The first Ca2+ transporters to be cloned from plants and shown to have regulated activity were calmodulin-dependent Ca2+ -pumps. The regulation of these pumps suggests that being able to change the rate of Ca2+...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)02023-4

    authors: Harper JF

    更新日期:2001-09-01 00:00:00

  • Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.

    abstract::Following the sequencing of whole genomes of model plants, high-throughput decoding of gene function is a major challenge in modern plant biology. In view of remarkable technical advances in transcriptomics and metabolomics, integrated analysis of these 'omics' by data-mining informatics is an excellent tool for predi...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.10.006

    authors: Saito K,Hirai MY,Yonekura-Sakakibara K

    更新日期:2008-01-01 00:00:00

  • Maize and sorghum: genetic resources for bioenergy grasses.

    abstract::The highly photosynthetic-efficient C4 grasses, such as switchgrass (Panicum virgatum), Miscanthus (Miscanthusxgiganteus), sorghum (Sorghum bicolor) and maize (Zea mays), are expected to provide abundant and sustainable resources of lignocellulosic biomass for the production of biofuels. A deeper understanding of the ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2008.06.002

    authors: Carpita NC,McCann MC

    更新日期:2008-08-01 00:00:00