Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.

Abstract:

:Following the sequencing of whole genomes of model plants, high-throughput decoding of gene function is a major challenge in modern plant biology. In view of remarkable technical advances in transcriptomics and metabolomics, integrated analysis of these 'omics' by data-mining informatics is an excellent tool for prediction and identification of gene function, particularly for genes involved in complicated metabolic pathways. The availability of Arabidopsis public transcriptome datasets containing data of >1000 microarrays reinforces the potential for prediction of gene function by transcriptome coexpression analysis. Here, we review the strategy of combining transcriptome and metabolome as a powerful technology for studying the functional genomics of model plants and also crop and medicinal plants.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Saito K,Hirai MY,Yonekura-Sakakibara K

doi

10.1016/j.tplants.2007.10.006

subject

Has Abstract

pub_date

2008-01-01 00:00:00

pages

36-43

issue

1

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(07)00305-6

journal_volume

13

pub_type

杂志文章,评审
  • Phylloplane proteins: emerging defenses at the aerial frontline?

    abstract::The phylloplane, or leaf surface, is an interkingdom crossroads between plants and microorganisms, and secretion of antimicrobial biochemicals to aerial surfaces is thought to be one defensive strategy by which plants deter potential pathogens. Secondary metabolites on leaf surfaces are well documented but antimicrobi...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.12.003

    authors: Shepherd RW,Wagner GJ

    更新日期:2007-02-01 00:00:00

  • The evolution of parasitism in plants.

    abstract::The multiple independent origins of plant parasitism suggest that numerous ancestral plant lineages possessed the developmental flexibility to meet the requirements of a parasitic life style, including such adaptations as the ability to recognize host plants, form an invasive haustorium, and regulate the transfer of n...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.01.004

    authors: Westwood JH,Yoder JI,Timko MP,dePamphilis CW

    更新日期:2010-04-01 00:00:00

  • Woody Plant Declines. What's Wrong with the Microbiome?

    abstract::Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2019.12.024

    authors: Bettenfeld P,Fontaine F,Trouvelot S,Fernandez O,Courty PE

    更新日期:2020-04-01 00:00:00

  • How Does pH Fit in with Oscillating Polar Growth?

    abstract::Polar growth in root hairs and pollen tubes is an excellent model for investigating plant cell size regulation. While linear plant growth is historically explained by the acid growth theory, which considers that auxin triggers apoplastic acidification by activating plasma membrane P-type H+-ATPases (AHAs) along with c...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2018.02.008

    authors: Mangano S,Martínez Pacheco J,Marino-Buslje C,Estevez JM

    更新日期:2018-06-01 00:00:00

  • Silicon Defence in Plants: Does Herbivore Identity Matter?

    abstract::Silicon accumulation is a key defence against herbivorous pests, but may have wider detrimental impacts if plants become unpalatable for livestock. We argue that some herbivores are better adapted to silicon-rich diets than others; herbivore anatomy and physiology, and the nature of silicon deposition, are crucial to ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2020.10.005

    authors: Johnson SN,Hartley SE,Moore BD

    更新日期:2021-02-01 00:00:00

  • Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling.

    abstract::Communication between source organs (exporters of photoassimilates) and sink organs (importers of fixed carbon) has a pivotal role in carbohydrate assimilation and partitioning during plant growth and development. Plant productivity is enhanced by sink strength and source activity, which are regulated by a complex sig...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.10.009

    authors: Yu SM,Lo SF,Ho TD

    更新日期:2015-12-01 00:00:00

  • Waxy Editing: Old Meets New.

    abstract::The Waxy (Wx) gene that governs amylose synthesis is an old but widely used target in improving the quality of starchy crops. New genome-editing strategies are being deployed to create beneficial Wx alleles with finely tuned amylose content (AC). Precise targeting must be combined with traditional approaches to develo...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2020.07.009

    authors: Huang L,Sreenivasulu N,Liu Q

    更新日期:2020-10-01 00:00:00

  • Weed genomics: new tools to understand weed biology.

    abstract::In spite of the large yield losses that weeds inflict on crops, we know little about the genomics of economically important weed species. Comparative genomics between plant model species and weeds, map-based approaches, genomic sequencing and functional genomics can play vital roles in understanding and dissecting wee...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.06.003

    authors: Basu C,Halfhill MD,Mueller TC,Stewart CN Jr

    更新日期:2004-08-01 00:00:00

  • Oxidative tailoring of carotenoids: a prospect towards novel functions in plants.

    abstract::Carotenoids not only play a crucial role in their intact form but also are an important reservoir of lipid-derived bioactive mediators. The process is initiated by tailoring enzymes that cleave carotenoids into apocarotenoids. Apocarotenoids act as visual or volatile signals to attract pollinating and seed dispersal a...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.02.007

    authors: Bouvier F,Isner JC,Dogbo O,Camara B

    更新日期:2005-04-01 00:00:00

  • Plant conservation genetics in a changing world.

    abstract::Plant conservation genetics provides tools to guide conservation and restoration efforts, measure and monitor success, and ultimately minimize extinction risk by conserving species as dynamic entities capable of evolving in the face of changing conditions. We consider the application of these tools to rare and common ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2009.08.005

    authors: Kramer AT,Havens K

    更新日期:2009-11-01 00:00:00

  • Photorespiration: players, partners and origin.

    abstract::Photorespiratory metabolism allows plants to thrive in a high-oxygen containing environment. This metabolic pathway recycles phosphoglycolate, a toxic compound, back to phosphoglycerate, when oxygen substitutes for carbon dioxide in the first reaction of photosynthetic carbon fixation. The recovery of phosphoglycerate...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.03.006

    authors: Bauwe H,Hagemann M,Fernie AR

    更新日期:2010-06-01 00:00:00

  • Plant-Pesticide Interactions and the Global Chloromethane Budget.

    abstract::Ecological, signaling, metabolic, and chemical processes in plant-microorganism systems and in plant-derived material may link the use of chlorinated pesticides in the environment with plant chloromethane emission. This neglected factor should be taken into account to assess global planetary budgets of chloromethane a...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2017.12.001

    authors: Bringel F,Couée I

    更新日期:2018-02-01 00:00:00

  • Serine in plants: biosynthesis, metabolism, and functions.

    abstract::Serine (Ser) has a fundamental role in metabolism and signaling in living organisms. In plants, the existence of different pathways of Ser biosynthesis has complicated our understanding of this amino acid homeostasis. The photorespiratory glycolate pathway has been considered to be of major importance, whereas the non...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2014.06.003

    authors: Ros R,Muñoz-Bertomeu J,Krueger S

    更新日期:2014-09-01 00:00:00

  • Evolution of jasmonate and salicylate signal crosstalk.

    abstract::The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Cur...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.010

    authors: Thaler JS,Humphrey PT,Whiteman NK

    更新日期:2012-05-01 00:00:00

  • Light signaling: back to space.

    abstract::Recent work has increased our understanding of the molecular and cellular mechanisms of the phytochrome family of photoreceptors in controlling plant photomorphogenesis. However, the importance of long-distance communication in controlling light responses has received relatively little attention and is poorly understo...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.12.003

    authors: Bou-Torrent J,Roig-Villanova I,Martínez-García JF

    更新日期:2008-03-01 00:00:00

  • The Hidden Face of Rubisco.

    abstract::Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) fixes atmospheric CO2 into organic compounds and is composed of eight copies each of a large subunit (RbcL) and a small subunit (RbcS). Recent reports have revealed unusual RbcS, which are expressed in particular tissues and confer higher catalytic rate, lesser...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2018.02.006

    authors: Pottier M,Gilis D,Boutry M

    更新日期:2018-05-01 00:00:00

  • bHLH class transcription factors take centre stage in phytochrome signalling.

    abstract::The phytochrome family of photoreceptors (there are five phytochromes in Arabidopsis, named phyA to phyE) maximally absorbs red and far-red light and plays important functions throughout the life cycle of plants. Several recent studies have shown that multiple related bHLH (basic helix-loop-helix) class transcription ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.12.005

    authors: Duek PD,Fankhauser C

    更新日期:2005-02-01 00:00:00

  • How the deposition of cellulose microfibrils builds cell wall architecture.

    abstract::Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself, creating its own d...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(99)01507-1

    authors: Emons AM,Mulder BM

    更新日期:2000-01-01 00:00:00

  • Plant infection and the establishment of fungal biotrophy.

    abstract::To exploit plants as living substrates, biotrophic fungi have evolved remarkable variations of their tubular cells, the hyphae. They form infection structures such as appressoria, penetration hyphae and infection hyphae to invade the plant with minimal damage to host cells. To establish compatibility with the host, co...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(02)02297-5

    authors: Mendgen K,Hahn M

    更新日期:2002-08-01 00:00:00

  • Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?

    abstract::A serious factor limiting the engineering of stress tolerance has been our ignorance about the function of stress-induced genes. A stress-activated novel aldose-aldehyde reductase was cloned from alfalfa. The ectopic expression of this gene in tobacco resulted in tolerance to oxidative stress and dehydration. Physiolo...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)01983-5

    authors: Bartels D

    更新日期:2001-07-01 00:00:00

  • Specialist versus generalist insect herbivores and plant defense.

    abstract::There has been a long-standing hypothesis that specialist and generalist insects interact with plants in distinct ways. Although many tests exist, they typically compare only one species of each, they sometimes confound specialization and feeding guild, and often do not link chemical or transcriptional measures of the...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.006

    authors: Ali JG,Agrawal AA

    更新日期:2012-05-01 00:00:00

  • Modification of DNA Checkpoints to Confer Aluminum Tolerance.

    abstract::Although aluminum (Al) toxicity represents a global agricultural problem, the biochemical targets for Al remain elusive. Recently identified Arabidopsis mutants with increased Al tolerance provide evidence of DNA as one of the main targets of Al. This insight could lead the way for novel strategies to generate Al-tole...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2016.12.003

    authors: Eekhout T,Larsen P,De Veylder L

    更新日期:2017-02-01 00:00:00

  • COPII-mediated traffic in plants.

    abstract::The secretory pathway encloses functionally interlinked organelles for the synthesis and deposition of most of the building blocks of eukaryotic cells, such as lipids, proteins and sugars. The coat protein complex II (COPII) is a specialized protein complex for the transport between secretory organelles, specifically ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.05.010

    authors: Marti L,Fornaciari S,Renna L,Stefano G,Brandizzi F

    更新日期:2010-09-01 00:00:00

  • Three-dimensional geometric morphometrics for studying floral shape variation.

    abstract::Variation in floral shape is of major interest to evolutionary and pollination biologists, plant systematists and developmental geneticists. Quantifying this variation has been difficult due to the three-dimensional (3D) complexity of angiosperm flowers. By combining 3D geometric representations of flowers obtained by...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2010.05.005

    authors: van der Niet T,Zollikofer CP,León MS,Johnson SD,Linder HP

    更新日期:2010-08-01 00:00:00

  • Improving Inferences from Hydrological Isotope Techniques.

    abstract::Plant water isotopic compositions are widely used to describe patterns of soils water uptake. Although valuable, the technique only provides relative uptake distributions, which can be misleading. Without information on total transpiration, the technique cannot address central questions on drought response, competitio...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2020.12.013

    authors: Rasmussen CR,Kulmatiski A

    更新日期:2021-01-13 00:00:00

  • Cellulose-binding domains: cellulose associated-defensive sensing partners?

    abstract::The cellulose-binding domains (CBDs) in the Phytophthora cellulose-binding elicitor lectin (CBEL) are potent elicitors of plant defence responses. Induction of defence has also been reported in various cellulose-deficient mutants of Arabidopsis thaliana. Based on these observations, we propose a model linking cellulos...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2008.02.004

    authors: Dumas B,Bottin A,Gaulin E,Esquerré-Tugayé MT

    更新日期:2008-04-01 00:00:00

  • Degrade or Silence? - RNA Turnover Takes Control of Epicuticular Wax Synthesis.

    abstract::Epicuticular waxes serve as a protective layer on plant aerial surfaces. The chemical reactions of wax biosynthesis are well understood, but little is known about the underlying regulatory mechanisms. New data from Yang et al. and Lange et al. argue that RNA degradation and silencing play a key role in regulating the ...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2020.06.009

    authors: Daszkowska-Golec A

    更新日期:2020-10-01 00:00:00

  • Paradoxical EU agricultural policies on genetically engineered crops.

    abstract::European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2013.03.004

    authors: Masip G,Sabalza M,Pérez-Massot E,Banakar R,Cebrian D,Twyman RM,Capell T,Albajes R,Christou P

    更新日期:2013-06-01 00:00:00

  • TCP three-way handshake: linking developmental processes with plant immunity.

    abstract::The TCP gene family encodes plant-specific transcription factors involved in growth and development. Equally important are the interactions between TCP factors and other pathways extending far beyond development, as they have been found to regulate a variety of hormonal pathways and signaling cascades. Recent advances...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.01.005

    authors: Lopez JA,Sun Y,Blair PB,Mukhtar MS

    更新日期:2015-04-01 00:00:00

  • Aquaporins and water homeostasis in plants.

    abstract::Aquaporins are water channel proteins of vacuolar and plasma membranes. When opened they facilitate the passive movement of water molecules down a water potential gradient. In Arabidopsis, 30 genes have been found that code for aquaporin homologues. Some of these genes code for highly abundant constitutively expressed...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01438-7

    authors: Kjellbom P,Larsson C,Johansson I I,Karlsson M,Johanson U

    更新日期:1999-08-01 00:00:00