Comparative Dose-Response Analysis of Inducible Promoters in Cyanobacteria.

Abstract:

:Design and implementation of synthetic biological circuits highly depends on well-characterized, robust promoters with predictable input-output responses. While great progress has been made with heterotrophic model organisms such as Escherichia coli, the available variety of tunable promoter parts for phototrophic cyanobacteria is still limited. Commonly used synthetic and semisynthetic promoters show weak dynamic ranges or no regulation at all in cyanobacterial models. Well-controlled alternatives such as native metal-responsive promoters, however, pose the problems of inducer toxicity and lacking orthogonality. Here, we present the comparative assessment of dose-response functions of four different inducible promoter systems in the model cyanobacterium Synechocystis sp. PCC 6803. Using the novel bimodular reporter plasmid pSHDY, dose-response dynamics of the re-established vanillate-inducible promoter PvanCC was compared to the previously described rhamnose-inducible P rha , the anhydrotetracycline-inducible PL03, and the Co2+-inducible P coaT . We estimate individual advantages and disadvantages regarding dynamic range and strength of each promoter, also in comparison with well-established constitutive systems. We observed a delicate balance between transcription factor toxicity and sufficient expression to obtain a dose-dependent response to the inducer. In summary, we expand the current understanding and employability of inducible promoters in cyanobacteria, facilitating the scalability and robustness of synthetic regulatory network designs and of complex metabolic pathway engineering strategies.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Behle A,Saake P,Germann AT,Dienst D,Axmann IM

doi

10.1021/acssynbio.9b00505

subject

Has Abstract

pub_date

2020-04-17 00:00:00

pages

843-855

issue

4

issn

2161-5063

journal_volume

9

pub_type

杂志文章
  • Engineered Bacterial Production of Volatile Methyl Salicylate.

    abstract::The engineering of microbial metabolic pathways over the last two decades has led to numerous examples of cell factories used for the production of small molecules. These molecules have an array of utility in commercial industries and as in situ expressed biomarkers or therapeutics in microbial applications. While mos...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00497

    authors: Chien T,Jones DR,Danino T

    更新日期:2021-01-15 00:00:00

  • Combinatory Biosynthesis of Prenylated 4-Hydroxybenzoate Derivatives by Overexpression of the Substrate-Promiscuous Prenyltransferase XimB in Engineered E. coli.

    abstract::Prenylated aromatic compounds are important intermediates in the biosynthesis of bioactive molecules such as 3-chromanols from plants, ubiquinones from prokaryotes and meroterpenoids from sponges. Biosynthesis of prenylated aromatic compounds using prokaryotic microorganisms has attracted increasing attention in the f...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00070

    authors: He BB,Bu XL,Zhou T,Li SM,Xu MJ,Xu J

    更新日期:2018-09-21 00:00:00

  • Specification and simulation of synthetic multicelled behaviors.

    abstract::Recent advances in the design and construction of synthetic multicelled systems in E. coli and S. cerevisiae suggest that it may be possible to implement sophisticated distributed algorithms with these relatively simple organisms. However, existing design frameworks for synthetic biology do not account for the unique ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300034m

    authors: Jang SS,Oishi KT,Egbert RG,Klavins E

    更新日期:2012-08-17 00:00:00

  • Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201.

    abstract::Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clust...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00161

    authors: Jin ZJ,Zhou L,Sun S,Cui Y,Song K,Zhang X,He YW

    更新日期:2020-07-17 00:00:00

  • The Formal Language and Design Principles of Autonomous DNA Walker Circuits.

    abstract::Simple computation can be performed using the interactions between single-stranded molecules of DNA. These interactions are typically toehold-mediated strand displacement reactions in a well-mixed solution. We demonstrate that a DNA circuit with tethered reactants is a distributed system and show how it can be describ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00275

    authors: Boemo MA,Lucas AE,Turberfield AJ,Cardelli L

    更新日期:2016-08-19 00:00:00

  • 3D Printing for the Fabrication of Biofilm-Based Functional Living Materials.

    abstract::Bacterial biofilms are three-dimensional networks of cells entangled in a self-generated extracellular polymeric matrix composed of proteins, lipids, polysaccharides, and nucleic acids. Biofilms can establish themselves on virtually any accessible surface and lead to varying impacts ranging from infectious diseases to...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00192

    authors: Balasubramanian S,Aubin-Tam ME,Meyer AS

    更新日期:2019-07-19 00:00:00

  • Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.

    abstract::RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA),...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00237

    authors: Yerramilli VS,Kim KH

    更新日期:2018-03-16 00:00:00

  • The spinach RNA aptamer as a characterization tool for synthetic biology.

    abstract::Characterization of genetic control elements is essential for the predictable engineering of synthetic biology systems. The current standard for in vivo characterization of control elements is through the use of fluorescent reporter proteins such as green fluorescent protein (GFP). Gene expression, however, involves n...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400089c

    authors: Pothoulakis G,Ceroni F,Reeve B,Ellis T

    更新日期:2014-03-21 00:00:00

  • Assembly of Plant Enzymes in E. coli for the Production of the Valuable (-)-Podophyllotoxin Precursor (-)-Pluviatolide.

    abstract::Lignans are plant secondary metabolites with a wide range of reported health-promoting bioactivities. Traditional routes toward these natural products involve, among others, the extraction from plant sources and chemical synthesis. However, the availability of the sources and the complex chemical structures of lignans...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00354

    authors: Decembrino D,Ricklefs E,Wohlgemuth S,Girhard M,Schullehner K,Jach G,Urlacher VB

    更新日期:2020-11-20 00:00:00

  • Identifying Improved Sites for Heterologous Gene Integration Using ATAC-seq.

    abstract::Constructing efficient cellular factories often requires integration of heterologous pathways for synthesis of novel compounds and improved cellular productivity. Few genomic sites are routinely used, however, for efficient integration and expression of heterologous genes, especially in nonmodel hosts. Here, a data-gu...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00299

    authors: Brady JR,Tan MC,Whittaker CA,Colant NA,Dalvie NC,Love KR,Love JC

    更新日期:2020-09-18 00:00:00

  • Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes.

    abstract::Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like compl...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400197f

    authors: Jindou S,Ito Y,Mito N,Uematsu K,Hosoda A,Tamura H

    更新日期:2014-07-18 00:00:00

  • In-Silico Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium.

    abstract::Living organisms employ endogenous negative feedback loops to maintain homeostasis despite environmental fluctuations. A pressing open challenge in Synthetic Biology is to design and implement synthetic circuits to control host cells' behavior, in order to regulate and maintain desired conditions. To cope with the hig...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00220

    authors: Fiore G,Matyjaszkiewicz A,Annunziata F,Grierson C,Savery NJ,Marucci L,di Bernardo M

    更新日期:2017-03-17 00:00:00

  • A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.

    abstract::Most of the current methods for controlling the formation rate of a key protein or enzyme in cell factories rely on the manipulation of target genes within the pathway. In this article, we present a novel synthetic system for post-translational regulation of protein levels, FENIX, which provides both independent contr...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00345

    authors: Durante-Rodríguez G,de Lorenzo V,Nikel PI

    更新日期:2018-11-16 00:00:00

  • Genetically Encodable Bacterial Flavin Transferase for Fluorogenic Protein Modification in Mammalian Cells.

    abstract::A bacterial flavin transferase (ApbE) was recently employed for flavin mononucleotide (FMN) modification on the Na+-translocating NADH:quinone oxidoreductase C (NqrC) protein in the pathogenic Gram-negative bacterium Vibrio cholerae. We employed this unique post-translational modification in mammalian cells and found ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00284

    authors: Kang MG,Park J,Balboni G,Lim MH,Lee C,Rhee HW

    更新日期:2017-04-21 00:00:00

  • Nucleic Acid Detection Using CRISPR/Cas Biosensing Technologies.

    abstract::For infectious diseases, rapid and accurate identification of the pathogen is critical for effective management and treatment, but diagnosis remains challenging, particularly in resource-limited areas. Methods that accurately detect pathogen nucleic acids can provide robust, accurate, rapid, and ultrasensitive technol...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00507

    authors: Aman R,Mahas A,Mahfouz M

    更新日期:2020-06-19 00:00:00

  • An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene.

    abstract::We study translation repression in bacteria by engineering a regulatory circuit that functions as a binding assay for RNA binding proteins (RBP) in vivo. We do so by inducing expression of a fluorescent protein-RBP chimera, together with encoding its binding site at various positions within the ribosomal initiation re...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00378

    authors: Katz N,Cohen R,Solomon O,Kaufmann B,Atar O,Yakhini Z,Goldberg S,Amit R

    更新日期:2018-12-21 00:00:00

  • Semirational Approach for Ultrahigh Poly(3-hydroxybutyrate) Accumulation in Escherichia coli by Combining One-Step Library Construction and High-Throughput Screening.

    abstract::As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00083

    authors: Li T,Ye J,Shen R,Zong Y,Zhao X,Lou C,Chen GQ

    更新日期:2016-11-18 00:00:00

  • Cloning, Stability, and Modification of Mycoplasma hominis Genome in Yeast.

    abstract::Mycoplasma hominis is a minimal human pathogen that is responsible for genital and neonatal infections. Despite many attempts, there is no efficient genetic tool to manipulate this bacterium, limiting most investigations of its pathogenicity and its uncommon energy metabolism that relies on arginine. The recent clonin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00379

    authors: Rideau F,Le Roy C,Descamps ECT,Renaudin H,Lartigue C,Bébéar C

    更新日期:2017-05-19 00:00:00

  • Single-Molecule Kinetics Show DNA Pyrimidine Content Strongly Affects RNA:DNA and TNA:DNA Heteroduplex Dissociation Rates.

    abstract::The heteroduplex hybridization thermodynamics of DNA with either RNA or TNA are greatly affected by DNA pyrimidine content, where increased DNA pyrimidine content leads to significantly increased duplex stability. Little is known, however, about the effect that purine or pyrimidine content has on the hybridization kin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00471

    authors: Lackey HH,Chen Z,Harris JM,Peterson EM,Heemstra JM

    更新日期:2020-02-21 00:00:00

  • Engineering Translational Activators with CRISPR-Cas System.

    abstract::RNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-rep...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00130

    authors: Du P,Miao C,Lou Q,Wang Z,Lou C

    更新日期:2016-01-15 00:00:00

  • Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane.

    abstract::Agricultural soils are often cocontaminated with multiple pesticides. Unfortunately, microorganisms isolated from natural environments do not possess the ability to simultaneously degrade different classes of pesticides. Currently, we can use the approaches of synthetic biology to create a strain endowed with various ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00025

    authors: Gong T,Liu R,Zuo Z,Che Y,Yu H,Song C,Yang C

    更新日期:2016-05-20 00:00:00

  • Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology.

    abstract::To facilitate the construction of cell-free genetic devices, we evaluated the ability of 17 different fluorescent proteins to give easily detectable fluorescence signals in real-time from in vitro transcription-translation reactions with a minimal system consisting of T7 RNA polymerase and E. coli translation machiner...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400003y

    authors: Lentini R,Forlin M,Martini L,Del Bianco C,Spencer AC,Torino D,Mansy SS

    更新日期:2013-09-20 00:00:00

  • Design and Characterization of an Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct Symmetry Elements.

    abstract::Exploiting simple types of symmetry common to many natural protein oligomers as a starting point, several recent studies have succeeded in engineering complex self-assembling protein architectures reminiscent but distinct from those evolved in the natural world. Designing symmetric protein cages with a wide range of p...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00392

    authors: Cannon KA,Nguyen VN,Morgan C,Yeates TO

    更新日期:2020-03-20 00:00:00

  • Engineering Synthetic Proteins to Generate Ca2+ Signals in Mammalian Cells.

    abstract::The versatility of Ca2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca2+...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00310

    authors: Qudrat A,Truong K

    更新日期:2017-03-17 00:00:00

  • A Designed A. vinelandii-S. elongatus Coculture for Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals.

    abstract::Microbial mutualisms play critical roles in a diverse number of ecosystems and have the potential to improve the efficiency of bioproduction for desirable chemicals. We investigate the growth of a photosynthetic cyanobacterium, Synechococcus elongatus PCC 7942, and a diazotroph, Azotobacter vinelandii, in coculture. F...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00107

    authors: Smith MJ,Francis MB

    更新日期:2016-09-16 00:00:00

  • Resource Sharing Controls Gene Expression Bursting.

    abstract::Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00189

    authors: Caveney PM,Norred SE,Chin CW,Boreyko JB,Razooky BS,Retterer ST,Collier CP,Simpson ML

    更新日期:2017-02-17 00:00:00

  • A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria.

    abstract::Engineered bacteria promise to revolutionize diagnostics and therapeutics, yet many applications are precluded by the limited number of detectable signals. Here we present a general framework to engineer synthetic receptors enabling bacterial cells to respond to novel ligands. These receptors are activated via ligand-...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00266

    authors: Chang HJ,Mayonove P,Zavala A,De Visch A,Minard P,Cohen-Gonsaud M,Bonnet J

    更新日期:2018-01-19 00:00:00

  • Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.

    abstract::To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00280

    authors: Jayaraman P,Yeoh JW,Zhang J,Poh CL

    更新日期:2018-11-16 00:00:00

  • BioBlocks: Programming Protocols in Biology Made Easier.

    abstract::The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-demand biology enterprises are making automating entire experiments a reality. Automation offers the benefit of high-throughput experimentation, rapid prototyping, and improved reproducibility of results. However, learn...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00304

    authors: Gupta V,Irimia J,Pau I,Rodríguez-Patón A

    更新日期:2017-07-21 00:00:00

  • Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly.

    abstract::Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00333

    authors: Potapov V,Ong JL,Kucera RB,Langhorst BW,Bilotti K,Pryor JM,Cantor EJ,Canton B,Knight TF,Evans TC Jr,Lohman GJS

    更新日期:2018-11-16 00:00:00