Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose.

Abstract:

BACKGROUND:Considerable works have been reported concerning the obstruction of enzymatic hydrolysis efficiency by lignin. However, there is a lack of information about the influence of lignin on the adsorption of cellulases on cellulose, along with the hydrolytic activity of the cellulases adsorbed on lignin. In addition, limited discovery has been reported about the influence of additives on cellulase desorption from lignin and lignocellulosic materials. In this work, the effects of lignin on cellulase adsorption and hydrolysis of Avicel were investigated and the effects of Tween 80 on cellulases adsorption and desorption on/from lignin and corn stover were explored. RESULTS:The results showed that the maximum adsorption capacity of Avicel reduced from 276.9 to 179.7 and 112.1 mg/g cellulose with the addition of 1 and 10 mg lignin per gram Avicel, which indicated that lignin adsorbed on Avicel reduced surface area of cellulose and lignin available for cellulases. Cellulases adsorbed on lignin could be released by reaching new adsorption equilibrium between lignin and supernatants. In addition, cellulases desorbed from lignin still possess hydrolytic capacity. Tween 80 could adsorb onto both lignin and corn stover, and reduce the cellulase adsorption on them. Furthermore, Tween 80 could enhance desorption of cellulases from both lignin and corn stover, which might be due to the competitive adsorption between cellulases and Tween 80 on them. CONCLUSIONS:The presence of lignin decreased the maximum adsorption capacity of cellulases on cellulose and the cellulases adsorbed on lignin could be released to supernatant, exhibiting hydrolytic activity. Tween 80 could alleviate the adsorption of cellulases and enhanced desorption of cellulases on/from lignin and corn stover. The conclusions of this work help us further understanding the role of lignin in the reduction of adsorption of cellulases on substrates, and the function of additives in cellulases adsorption and desorption on/from lignin and substrates.

journal_name

Biotechnol Biofuels

authors

Li Y,Sun Z,Ge X,Zhang J

doi

10.1186/s13068-016-0434-0

subject

Has Abstract

pub_date

2016-01-26 00:00:00

pages

20

issn

1754-6834

pii

434

journal_volume

9

pub_type

杂志文章
  • Correction to: Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity.

    abstract::[This corrects the article DOI: 10.1186/s13068-018-1097-9.]. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,已发布勘误

    doi:10.1186/s13068-018-1185-x

    authors: Patidar SK,Kim SH,Kim JH,Park J,Park BS,Han MS

    更新日期:2018-07-03 00:00:00

  • A novel population balance model for the dilute acid hydrolysis of hemicellulose.

    abstract:BACKGROUND:Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experim...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0211-5

    authors: Greenwood AA,Farrell TW,Zhang Z,O'Hara IM

    更新日期:2015-02-19 00:00:00

  • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-3

    authors: Endo A,Nakamura T,Ando A,Tokuyasu K,Shima J

    更新日期:2008-04-15 00:00:00

  • Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate.

    abstract:Background:Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-1003-x

    authors: Siripong W,Wolf P,Kusumoputri TP,Downes JJ,Kocharin K,Tanapongpipat S,Runguphan W

    更新日期:2018-01-08 00:00:00

  • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.

    abstract:BACKGROUND:Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative toler...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-21

    authors: Chen X,Nielsen KF,Borodina I,Kielland-Brandt MC,Karhumaa K

    更新日期:2011-07-28 00:00:00

  • Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering.

    abstract:Background:Astaxanthin is a natural carotenoid pigment with tremendous antioxidant activity and great commercial value. Microbial production of astaxanthin via metabolic engineering has become a promising alternative. Although great efforts have been conducted by tuning the heterologous modules and precursor pools, the...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1227-4

    authors: Jin J,Wang Y,Yao M,Gu X,Li B,Liu H,Ding M,Xiao W,Yuan Y

    更新日期:2018-08-23 00:00:00

  • Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas.

    abstract::Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the pot...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1635-0

    authors: Takeuchi T,Benning C

    更新日期:2019-12-23 00:00:00

  • Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

    abstract:BACKGROUND:Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic comp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0664-1

    authors: Pham LT,Kim SJ,Kim YH

    更新日期:2016-11-15 00:00:00

  • Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor.

    abstract:Background:With the further development of anaerobic digestion, an increasing output of anaerobically digested wastewater (ADW), which typically contained high concentrations of ammonium, phosphate, and suspended solids, was inevitable. Microalgae cultivation offered a potential waste-to-value strategy to reduce the hi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1190-0

    authors: Chen X,Li Z,He N,Zheng Y,Li H,Wang H,Wang Y,Lu Y,Li Q,Peng Y

    更新日期:2018-07-09 00:00:00

  • Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2, Mg3(PO4)2, and derivatives.

    abstract:Background:Microalgae are widely be used in carbon sequestration, food supplements, natural pigments, polyunsaturated fatty acids, biofuel applications, and wastewater treatment. However, the difficulties incurred in algae cell separation and harvesting, and the exorbitant cost required to overcome these challenges, ar...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01734-8

    authors: Wu M,Li J,Qin H,Lei A,Zhu H,Hu Z,Wang J

    更新日期:2020-05-29 00:00:00

  • T-6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana.

    abstract:BACKGROUND:As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0706-3

    authors: Jin Y,Hu J,Liu X,Ruan Y,Sun C,Liu C

    更新日期:2017-01-21 00:00:00

  • Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism.

    abstract:BACKGROUND:Non-productive cellulase adsorption onto lignin has always been deemed to negatively affect the enzymatic hydrolysis of lignocellulosic feedstocks. Therefore, understanding enzyme-lignin interactions is essential for the development of enzyme mixtures, the processes of lignocellulose hydrolysis, and the gene...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-38

    authors: Guo F,Shi W,Sun W,Li X,Wang F,Zhao J,Qu Y

    更新日期:2014-03-14 00:00:00

  • Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4.

    abstract:Background:Toxic compounds present in both the hydrolysate and pyrolysate of lignocellulosic biomass severely hinder the further conversion of lignocellulose-derived fermentable sugars into useful chemicals by common biocatalysts like Zymomonas mobilis, which has remarkable advantages over yeast. Although the extra det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1287-5

    authors: Chang D,Yu Z,Ul Islam Z,French WT,Zhang Y,Zhang H

    更新日期:2018-10-16 00:00:00

  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol.

    abstract:Background:The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellul...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01751-7

    authors: Xia M,Peng M,Xue D,Cheng Y,Li C,Wang D,Lu K,Zheng Y,Xia T,Song J,Wang M

    更新日期:2020-06-24 00:00:00

  • Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.

    abstract:BACKGROUND:Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been functionally characterized...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0460-y

    authors: Aguilar-Pontes MV,Zhou M,van der Horst S,Theelen B,de Vries RP,van den Brink J

    更新日期:2016-02-20 00:00:00

  • Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.

    abstract:BACKGROUND:Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communiti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-41

    authors: Wirth R,Kovács E,Maróti G,Bagi Z,Rákhely G,Kovács KL

    更新日期:2012-07-12 00:00:00

  • Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    abstract:Background:Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1106-z

    authors: Detman A,Mielecki D,Pleśniak Ł,Bucha M,Janiga M,Matyasik I,Chojnacka A,Jędrysek MO,Błaszczyk MK,Sikora A

    更新日期:2018-04-21 00:00:00

  • Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass.

    abstract:BACKGROUND:Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-48

    authors: Wei H,Donohoe BS,Vinzant TB,Ciesielski PN,Wang W,Gedvilas LM,Zeng Y,Johnson DK,Ding SY,Himmel ME,Tucker MP

    更新日期:2011-11-10 00:00:00

  • Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are potential sources for third generation biofuels. Their capacity for biofuel production has been widely improved using metabolically engineered strains. In this study, we employed metabolic engineering design with target genes involved in selected processes including the fatty acid synthesis...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1349-8

    authors: Eungrasamee K,Miao R,Incharoensakdi A,Lindblad P,Jantaro S

    更新日期:2019-01-04 00:00:00

  • Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures.

    abstract:BACKGROUND:Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. RESULTS:Conversion of a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-6

    authors: Abreu AA,Karakashev D,Angelidaki I,Sousa DZ,Alves MM

    更新日期:2012-02-13 00:00:00

  • Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production.

    abstract:BACKGROUND:Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capabl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0172-0

    authors: Comba S,Sabatini M,Menendez-Bravo S,Arabolaza A,Gramajo H

    更新日期:2014-12-24 00:00:00

  • Techno-economic potential of bioethanol from bamboo in China.

    abstract:BACKGROUND:Bamboo is potentially an interesting feedstock for advanced bioethanol production in China due to its natural abundance, rapid growth, perennial nature and low management requirements. Liquid hot water (LHW) pretreatment was selected as a promising technology to enhance sugar release from bamboo lignocellulo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-173

    authors: Littlewood J,Wang L,Turnbull C,Murphy RJ

    更新日期:2013-11-29 00:00:00

  • Microbial effects of part-stream low-frequency ultrasonic pretreatment on sludge anaerobic digestion as revealed by high-throughput sequencing-based metagenomics and metatranscriptomics.

    abstract:Background:Part-stream low-frequency ultrasound (LFUS) was one of the common practices for sludge disintegration in full-scale anaerobic digestion (AD) facilities. However, the effectiveness of part-stream LFUS treatment and its effect on AD microbiome have not been fully elucidated. Methods:Here we testified the effe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1042-y

    authors: Xia Y,Yang C,Zhang T

    更新日期:2018-02-21 00:00:00

  • Product inhibition of cellulases studied with 14C-labeled cellulose substrates.

    abstract:BACKGROUND:As a green alternative for the production of transportation fuels, the enzymatic hydrolysis of lignocellulose and subsequent fermentation to ethanol are being intensively researched. To be economically feasible, the hydrolysis of lignocellulose must be conducted at a high concentration of solids, which resul...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-104

    authors: Teugjas H,Väljamäe P

    更新日期:2013-07-24 00:00:00

  • Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid.

    abstract:Background:The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0999-2

    authors: Shiga TM,Xiao W,Yang H,Zhang X,Olek AT,Donohoe BS,Liu J,Makowski L,Hou T,McCann MC,Carpita NC,Mosier NS

    更新日期:2017-12-27 00:00:00

  • Enzymatic synthesis of l-fucose from l-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme.

    abstract:Background:l-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using l-fucose isomerase, which interconverts l-fucose and l-fuculose, can be an efficient way of producing l-fucose for industrial applications. Here, we performed biochemical and struct...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1619-0

    authors: Kim IJ,Kim DH,Nam KH,Kim KH

    更新日期:2019-12-05 00:00:00

  • Periodic-peristole agitation for process enhancement of butanol fermentation.

    abstract:BACKGROUND:Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the importan...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0409-6

    authors: Xia ML,Wang L,Yang ZX,Chen HZ

    更新日期:2015-12-23 00:00:00

  • Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach.

    abstract:BACKGROUND:Genomic and proteomic analysis are potent tools for metabolic characterization of microorganisms. Although cellulose usually triggers cellulase production in cellulolytic fungi, the secretion of the different enzymes involved in polymer conversion is subjected to different factors, depending on growth condit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0844-7

    authors: de Eugenio LI,Méndez-Líter JA,Nieto-Domínguez M,Alonso L,Gil-Muñoz J,Barriuso J,Prieto A,Martínez MJ

    更新日期:2017-06-23 00:00:00

  • Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein deg...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0573-3

    authors: Nijland JG,Vos E,Shin HY,de Waal PP,Klaassen P,Driessen AJ

    更新日期:2016-07-26 00:00:00