PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis.

Abstract:

:Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.

journal_name

Autophagy

journal_title

Autophagy

authors

Ito S,Araya J,Kurita Y,Kobayashi K,Takasaka N,Yoshida M,Hara H,Minagawa S,Wakui H,Fujii S,Kojima J,Shimizu K,Numata T,Kawaishi M,Odaka M,Morikawa T,Harada T,Nishimura SL,Kaneko Y,Nakayama K,Kuwano K

doi

10.1080/15548627.2015.1017190

subject

Has Abstract

pub_date

2015-01-01 00:00:00

pages

547-59

issue

3

eissn

1554-8627

issn

1554-8635

journal_volume

11

pub_type

杂志文章
  • HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy.

    abstract::Intervertebral disc degeneration (IDD) is the primary pathological mechanism that underlies low back pain. Overloading-induced cell death, especially endogenous stem cell death, is the leading factor that undermines intrinsic repair and aggravates IDD. Previous research has separately studied the effect of oxygen conc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2021.1872227

    authors: He R,Wang Z,Cui M,Liu S,Wu W,Chen M,Wu Y,Qu Y,Lin H,Chen S,Wang B,Shao Z

    更新日期:2021-01-18 00:00:00

  • Folding into an autophagosome: ATG5 sheds light on how plants do it.

    abstract::Autophagosomes arise in yeast and animals from the sealing of a cup-shaped double-membrane precursor, the phagophore. The concerted action of about 30 evolutionarily conserved autophagy related (ATG) proteins lies at the core of this process. However, the mechanisms allowing phagophore generation and its differentiati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.29962

    authors: Le Bars R,Marion J,Satiat-Jeunemaitre B,Bianchi MW

    更新日期:2014-10-01 00:00:00

  • The life span-prolonging effect of sirtuin-1 is mediated by autophagy.

    abstract::The life span of various model organisms can be extended by caloric restriction as well as by autophagy-inducing pharmacological agents. Life span-prolonging effects have also been observed in yeast cells, nematodes and flies upon the overexpression of the deacetylase Sirtuin-1. Intrigued by these observations and by ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.6.1.10817

    authors: Morselli E,Maiuri MC,Markaki M,Megalou E,Pasparaki A,Palikaras K,Criollo A,Galluzzi L,Malik SA,Vitale I,Michaud M,Madeo F,Tavernarakis N,Kroemer G

    更新日期:2010-01-01 00:00:00

  • Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity.

    abstract::Mitochondrial quality control is an essential process required to maintain cellular homeostasis and functions. Mutations of PINK1 and PRKN/PARK2 contribute to the risk of Parkinson disease. Our recent findings indicate that depletion of Pink1 and Prkn promotes pancreatic tumorigenesis in KRAS-driven engineered mouse m...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2018.1526611

    authors: Kang R,Xie Y,Zeh HJ,Klionsky DJ,Tang D

    更新日期:2019-01-01 00:00:00

  • Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells.

    abstract::Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6083

    authors: Akar U,Chaves-Reyez A,Barria M,Tari A,Sanguino A,Kondo Y,Kondo S,Arun B,Lopez-Berestein G,Ozpolat B

    更新日期:2008-07-01 00:00:00

  • Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila.

    abstract::Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5782

    authors: Neufeld TP,Baehrecke EH

    更新日期:2008-07-01 00:00:00

  • The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy.

    abstract::T lymphocytes, the master regulators of immunity, have an unusual lifestyle. Equipped with a clonally distributed receptor they remain resting for long periods of time but go into overdrive when encountering antigen. Antigen recognition triggers an activation program that results in massive proliferation, differentiat...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.27345

    authors: Yang Z,Goronzy JJ,Weyand CM

    更新日期:2014-02-01 00:00:00

  • BECN1 is a new driver of ferroptosis.

    abstract::Ferroptosis is a form of regulated cell death caused by iron accumulation and oxidative injury. BECN1 is a key regulator of macroautophagy/autophagy, a catabolic process of degradation induced by starvation or other stressors. Our recent findings reveal a novel alternative mechanism by which BECN1 can promote ferropto...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2018.1513758

    authors: Kang R,Zhu S,Zeh HJ,Klionsky DJ,Tang D

    更新日期:2018-01-01 00:00:00

  • Spatiotemporal dynamics of autophagy receptors in selective mitophagy.

    abstract::Damaged mitochondria are turned over through a process of selective autophagy termed mitophagy. In mitophagy, unhealthy mitochondria are recognized and ubiquitinated by Parkinson disease-linked proteins PINK1 and PARK2. The subsequent recruitment of ubiquitin-binding autophagy receptors leads in turn to the sequestrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1212788

    authors: Moore AS,Holzbaur EL

    更新日期:2016-10-02 00:00:00

  • Dissecting the localization and function of Atg18, Atg21 and Ygr223c.

    abstract::Atg18p and Atg21p are two highly homologous yeast autophagy proteins. Atg18p functions in both autophagy and the selective Cvt-pathway, while the function of Atg21p is restricted to the Cvt-pathway. The yeast genome encodes with Ygr223cp (Hsv2p), a third member of this protein family. So far no function has been assig...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6801

    authors: Krick R,Henke S,Tolstrup J,Thumm M

    更新日期:2008-10-01 00:00:00

  • The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates.

    abstract::Autophagy is involved in cellular clearance of aggregate-prone proteins, thereby having a cytoprotective function. Studies in yeast have shown that the PI 3-kinase Vps34 and its regulatory protein kinase Vps15 are important for autophagy, but the possible involvement of these proteins in autophagy in a multicellular a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5829

    authors: Lindmo K,Brech A,Finley KD,Gaumer S,Contamine D,Rusten TE,Stenmark H

    更新日期:2008-05-01 00:00:00

  • The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan.

    abstract::The AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by sensing the metabolic status of the cell. AMPK is regulated by phosphorylation and dephosphorylation as a result of changing AMP/ATP levels and by removal of inhibitory ubiquitin residues by USP10. In this context, we identified the GID-c...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1695399

    authors: Liu H,Ding J,Köhnlein K,Urban N,Ori A,Villavicencio-Lorini P,Walentek P,Klotz LO,Hollemann T,Pfirrmann T

    更新日期:2020-09-01 00:00:00

  • Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    abstract::Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explore...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1052205

    authors: Guo ML,Liao K,Periyasamy P,Yang L,Cai Y,Callen SE,Buch S

    更新日期:2015-01-01 00:00:00

  • An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity.

    abstract::The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8377

    authors: Du Y,Yang D,Li L,Luo G,Li T,Fan X,Wang Q,Zhang X,Wang Y,Le W

    更新日期:2009-07-01 00:00:00

  • Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2.

    abstract::Phagocytosis and macroautophagy/autophagy are 2 processes involved in lysosome-mediated clearance of extracellular and intracellular components, respectively. Recent studies have identified the recruitment of the autophagic protein LC3 during phagocytosis of apoptotic corpses in what is now called LC3-associated phago...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1512452

    authors: Jenzer C,Simionato E,Largeau C,Scarcelli V,Lefebvre C,Legouis R

    更新日期:2019-02-01 00:00:00

  • A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases.

    abstract::Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. As with other age-dependent neurodegenerative disorders, ALS is linked to the presence of misfolded proteins that may perturb several intracellular mechanisms and trigger neu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13042

    authors: Crippa V,Carra S,Rusmini P,Sau D,Bolzoni E,Bendotti C,De Biasi S,Poletti A

    更新日期:2010-10-01 00:00:00

  • Nuclear membrane-derived autophagy, a novel process that participates in the presentation of endogenous viral antigens during HSV-1 infection.

    abstract::Complex membrane trafficking events are involved in the regulation of antigen processing and presentation of both endogenous and exogenous antigens. While these processes were believed to involve mainly organelles along the endo/phagocytic and the biosynthetic pathways, recent studies have shown that autophagy also pa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.7.9163

    authors: English L,Chemali M,Desjardins M

    更新日期:2009-10-01 00:00:00

  • Autophagy modulator plays a part in UV protection.

    abstract::Ultraviolet (UV)-induced DNA damage is a major risk factor for skin cancers including melanoma. UVRAG, originally identified to complement UV sensitivity in xeroderma pigmentosum (XP), has since been implicated in modulating macroautophagy/autophagy, in coordinating different intracellular trafficking pathways, and in...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196319

    authors: Yang Y,Quach C,Liang C

    更新日期:2016-09-01 00:00:00

  • Role for nanomaterial-autophagy interaction in neurodegenerative disease.

    abstract::Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Due to increasing research into the potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated e...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7142

    authors: Stern ST,Johnson DN

    更新日期:2008-11-01 00:00:00

  • Autophagy proteins play cytoprotective and cytocidal roles in leucine starvation-induced cell death in Saccharomyces cerevisiae.

    abstract::Autophagy is essential for prolonging yeast survival during nutrient deprivation; however, this report shows that some autophagy proteins may also be accelerating population death in those conditions. While leucine starvation caused YCA1-mediated apoptosis characterized by increased annexin V staining, nitrogen depriv...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19314

    authors: Dziedzic SA,Caplan AB

    更新日期:2012-05-01 00:00:00

  • AMPK connects energy stress to PIK3C3/VPS34 regulation.

    abstract::The class III phosphatidylinositol (PtdIns)-3 kinase, PIK3C3/VPS34, forms multiple complexes and regulates a variety of cellular functions, especially in intracellular vesicle trafficking and autophagy. Even though PtdIns3P, the product of PIK3C3, is thought to be a critical membrane marker for the autophagosome, it i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24877

    authors: Kim J,Guan KL

    更新日期:2013-07-01 00:00:00

  • PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy.

    abstract::Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome bi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1226735

    authors: Dias MV,Teixeira BL,Rodrigues BR,Sinigaglia-Coimbra R,Porto-Carreiro I,Roffé M,Hajj GN,Martins VR

    更新日期:2016-11-01 00:00:00

  • Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression.

    abstract::Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is com...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1385674

    authors: Perera ND,Sheean RK,Lau CL,Shin YS,Beart PM,Horne MK,Turner BJ

    更新日期:2018-01-01 00:00:00

  • Autophagy proteins promote hepatitis C virus replication.

    abstract::Autophagy is a fundamental process for anti-viral defense. Not surprisingly, viruses have developed strategies to subvert or use autophagy for their own benefit. In cell culture, autophagy proteins are proviral factors that favor initiation of hepatitis C virus (HCV) infection. Autophagy proteins are required for tran...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.10219

    authors: Dreux M,Chisari FV

    更新日期:2009-11-01 00:00:00

  • Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA.

    abstract::Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.9726

    authors: Montie HL,Merry DE

    更新日期:2009-11-01 00:00:00

  • Autophagy and post-ischemic conditioning in retinal ischemia.

    abstract::Retinal ischemia is a major cause of vision loss and a common underlying mechanism associated with diseases, such as diabetic retinopathy and central retinal artery occlusion. We have previously demonstrated the robust neuroprotection in retina induced by post-conditioning (post-C), a brief period of ischemia, 24 h, f...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1767371

    authors: Mathew B,Chennakesavalu M,Sharma M,Torres LA,Stelman CR,Tran S,Patel R,Burg N,Salkovski M,Kadzielawa K,Seiler F,Aldrich LN,Roth S

    更新日期:2020-05-26 00:00:00

  • Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome.

    abstract::Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which w...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1173799

    authors: Follo C,Barbone D,Richards WG,Bueno R,Broaddus VC

    更新日期:2016-07-02 00:00:00

  • STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells.

    abstract::Autophagy is one of the survival processes of cancer cells, especially in stressful conditions such as starvation, hypoxia and chemotherapeutic agents. However, its roles in tumor survival have not yet been fully elucidated. Here, we found for the first time that JAK2/STAT3 was activated in HeLa cells when they were s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13547

    authors: Yoon S,Woo SU,Kang JH,Kim K,Kwon MH,Park S,Shin HJ,Gwak HS,Chwae YJ

    更新日期:2010-11-01 00:00:00

  • Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure.

    abstract::Autophagy acts as an intrinsic defense system against intracellular bacterial survival. Recently, multiple cellular pathways that target intracellular bacterial pathogens to autophagy have been described. These include the Atg5/LC3 pathway, which targets Shigella, the ubiquitin (Ub)-NDP52-LC3 pathway, which targets Gr...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.7.3.14581

    authors: Ogawa M,Yoshikawa Y,Mimuro H,Hain T,Chakraborty T,Sasakawa C

    更新日期:2011-03-01 00:00:00

  • The NEDD4-USP13 axis facilitates autophagy via deubiquitinating PIK3C3.

    abstract::Macroautophagy/autophagy, an evolutionarily conserved eukaryotic bioprocess, plays an important role in the bulk degradation of intracellular macromolecules, organelles, and invading pathogens. PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) functions as a key protein in autophagy initiation and ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1743071

    authors: Xie W,Jin S,Cui J

    更新日期:2020-06-01 00:00:00