1, 25-D3 Protects From Cerebral Ischemia by Maintaining BBB Permeability via PPAR-γ Activation.

Abstract:

:The blood-brain barrier (BBB) is a physical and biochemical barrier that maintains cerebral homeostasis. BBB dysfunction in an ischemic stroke, results in brain injury and subsequent neurological impairment. The aim of this study was to determine the possible protective effects of 1, 25-dihydroxyvitamin D3 [1, 25(OH)2D3, 1, 25-D3, vit D] on BBB dysfunction, at the early stages of an acute ischemic brain injury. We analyzed the effects of 1, 25-D3 on BBB integrity in terms of histopathological changes, the neurological deficit, infarct size and the expression of brain derived neurotrophic factor (BDNF), in a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. BBB permeability and the expression of permeability-related proteins in the brain were also evaluated by Evans blue (EB) staining and Western blotting respectively. To determine the possible mechanism underlying the role of 1, 25-D3 in BBB maintenance, after MCAO/R, the rats were treated with the specific peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662. Supplementation with 1, 25-D3 markedly improved the neurological scores of the rats, decreased the infarct volume, prevented neuronal deformation and upregulated the expression of the tight junction (TJ) and BDNF proteins in their brains. Furthermore, it activated PPARγ but downregulated neuro-inflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α), after MCAO/R. Taken together, 1, 25-D3 protects against cerebral ischemia by maintaining BBB permeability, upregulating the level of BDNF and inhibiting PPARγ-mediated neuro-inflammation.

journal_name

Front Cell Neurosci

authors

Guo T,Wang Y,Guo Y,Wu S,Chen W,Liu N,Wang Y,Geng D

doi

10.3389/fncel.2018.00480

subject

Has Abstract

pub_date

2018-12-17 00:00:00

pages

480

issn

1662-5102

journal_volume

12

pub_type

杂志文章
  • Structural and Functional Features of Developing Brain Capillaries, and Their Alteration in Schizophrenia.

    abstract::Schizophrenia affects more than 1% of the world's population and shows very high heterogeneity in the positive, negative, and cognitive symptoms experienced by patients. The pathogenic mechanisms underlying this neurodevelopmental disorder are largely unknown, although it is proposed to emerge from multiple genetic an...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2020.595002

    authors: Carrier M,Guilbert J,Lévesque JP,Tremblay MÈ,Desjardins M

    更新日期:2021-01-15 00:00:00

  • Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination.

    abstract::Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct e...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00013

    authors: So JH,Huang C,Ge M,Cai G,Zhang L,Lu Y,Mu Y

    更新日期:2017-01-31 00:00:00

  • Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor.

    abstract::Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00106

    authors: Frye CA,Koonce CJ,Walf AA

    更新日期:2014-04-09 00:00:00

  • Intracerebral transplantation for neurological disorders. Lessons from developmental, experimental, and clinical studies.

    abstract::The use of human pluripotent stem cells (PSCs) for cell therapy faces a number of challenges that are progressively answered by results from clinical trials and experimental research. Among these is the control of differentiation before transplantation and the prediction of cell fate after administration into the huma...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00002

    authors: Benchoua A,Onteniente B

    更新日期:2012-01-27 00:00:00

  • Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia.

    abstract::Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expre...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00084

    authors: Sathyanesan A,Feijoo AA,Mehta ST,Nimarko AF,Lin W

    更新日期:2013-06-04 00:00:00

  • Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells.

    abstract::Ischemic stroke is a debilitating disease for which there are currently no effective treatments besides the clot-buster, tissue plasminogen activator (t-PA), which is administered to less than 10% of patients due to a limited (4.5 h) time window of efficacy. Thus, there is an urgent need for novel therapies that can p...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00066

    authors: Broughton BR,Lim R,Arumugam TV,Drummond GR,Wallace EM,Sobey CG

    更新日期:2013-01-17 00:00:00

  • Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    abstract::The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT n...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00215

    authors: Spencer WC,Deneris ES

    更新日期:2017-07-19 00:00:00

  • Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions.

    abstract::The possible cognitive effects of low frequency external electric fields (EFs), such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00310

    authors: Cavarretta F,Carnevale NT,Tegolo D,Migliore M

    更新日期:2014-10-09 00:00:00

  • NMDA Receptors Regulate the Development of Neuronal Intrinsic Excitability through Cell-Autonomous Mechanisms.

    abstract::Maturation of neuronal and synaptic functions during early life is essential for the development of neuronal circuits and behaviors. In newborns synaptic transmission at excitatory synapses is primarily mediated by N-methyl-D-aspartate receptors (NMDARs), and NMDAR-mediated signaling plays an important role in synapti...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00353

    authors: Hou G,Zhang ZW

    更新日期:2017-11-07 00:00:00

  • Increased Inflammation and Unchanged Density of Synaptic Vesicle Glycoprotein 2A (SV2A) in the Postmortem Frontal Cortex of Alzheimer's Disease Patients.

    abstract::Sections from the middle frontal gyrus (Brodmann area 46) of autopsy-confirmed Alzheimer's disease (AD) patients and non-demented subjects were examined for the prevalence of hallmark AD pathology, including amyloid-β (Aβ) plaques, phosphorylated tau (pTau) tangles, neuroinflammation and synaptic loss (n = 7 subjects/...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00538

    authors: Metaxas A,Thygesen C,Briting SRR,Landau AM,Darvesh S,Finsen B

    更新日期:2019-12-05 00:00:00

  • The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits.

    abstract::Synaptic plasticity of the neuronal circuits associated with feeding behavior is regulated by peripheral signals as a response to changes in the energy status of the body. These signals include glucose, free fatty acids, leptin and ghrelin and are released into circulation, being able to reach the brain. Ghrelin, a sm...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00205

    authors: Serrenho D,Santos SD,Carvalho AL

    更新日期:2019-05-27 00:00:00

  • Phase Coupled Firing of Prefrontal Parvalbumin Interneuron With High Frequency Oscillations.

    abstract::The prefrontal cortex (PFC) plays a central role in executive functions and inhibitory control over many cognitive behaviors. Dynamic changes in local field potentials (LFPs), such as gamma oscillation, have been hypothesized to be important for attentive behaviors and modulated by local interneurons such as parvalbum...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.610741

    authors: Yao Y,Wu M,Wang L,Lin L,Xu J

    更新日期:2020-11-25 00:00:00

  • Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus.

    abstract::Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00106

    authors: Heise C,Schroeder JC,Schoen M,Halbedl S,Reim D,Woelfle S,Kreutz MR,Schmeisser MJ,Boeckers TM

    更新日期:2016-04-26 00:00:00

  • Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ß and CDK5 following traumatic brain injury.

    abstract::Aberrant ion channel function has been heralded as a main underlying mechanism driving epilepsy and its symptoms. However, it has become increasingly clear that treatment strategies targeting voltage-gated sodium or calcium channels merely mask the symptoms of epilepsy without providing disease-modifying benefits. Ion...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00135

    authors: Wilson SM,Ki Yeon S,Yang XF,Park KD,Khanna R

    更新日期:2014-05-28 00:00:00

  • Xenon Exerts Neuroprotective Effects on Kainic Acid-Induced Acute Generalized Seizures in Rats via Increased Autophagy.

    abstract::Xenon has been shown to have neuroprotective effects and is clinically used as a favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects of xenon treatment in epileptic animals. However, the mechanism underlying these protective effects remains unclear. We aimed to assess the effects ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.582872

    authors: Zhu W,Zhu J,Zhao S,Li J,Hou D,Zhang Y,Sun H

    更新日期:2020-10-06 00:00:00

  • Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

    abstract::Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never bee...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00004

    authors: Tatulli G,Mitro N,Cannata SM,Audano M,Caruso D,D'Arcangelo G,Lettieri-Barbato D,Aquilano K

    更新日期:2018-01-17 00:00:00

  • Intraspinal Plasticity Associated With the Development of Autonomic Dysreflexia After Complete Spinal Cord Injury.

    abstract::Traumatic spinal cord injury (SCI) leads to disruption of sensory, motor and autonomic function, and triggers structural, physiological and biochemical changes that cause reorganization of existing circuits that affect functional recovery. Propriospinal neurons (PN) appear to be very plastic within the inhibitory micr...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00505

    authors: Michael FM,Patel SP,Rabchevsky AG

    更新日期:2019-11-08 00:00:00

  • Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    abstract::The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpos...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00200

    authors: Narla C,Dunn HA,Ferguson SS,Poulter MO

    更新日期:2015-05-28 00:00:00

  • How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    abstract::Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00201

    authors: Tomassy GS,Fossati V

    更新日期:2014-07-28 00:00:00

  • Photobiomodulation and Coenzyme Q10 Treatments Attenuate Cognitive Impairment Associated With Model of Transient Global Brain Ischemia in Artificially Aged Mice.

    abstract::Disturbances in mitochondrial biogenesis and bioenergetics, combined with neuroinflammation, play cardinal roles in the cognitive impairment during aging that is further exacerbated by transient cerebral ischemia. Both near-infrared (NIR) photobiomodulation (PBM) and Coenzyme Q10 (CoQ10) administration are known to st...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00074

    authors: Salehpour F,Farajdokht F,Mahmoudi J,Erfani M,Farhoudi M,Karimi P,Rasta SH,Sadigh-Eteghad S,Hamblin MR,Gjedde A

    更新日期:2019-03-19 00:00:00

  • Ca2+ Regulates the Kinetics of Synaptic Vesicle Fusion at the Afferent Inner Hair Cell Synapse.

    abstract::The early auditory pathway processes information at high rates and with utmost temporal fidelity. Consequently, the synapses in the auditory pathway are highly specialized to meet the extraordinary requirements on signal transmission. The calyceal synapses in the auditory brainstem feature more than a hundred active z...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00364

    authors: Huang CH,Moser T

    更新日期:2018-10-17 00:00:00

  • Effects of Voluntary Wheel-Running Types on Hippocampal Neurogenesis and Spatial Cognition in Middle-Aged Mice.

    abstract::While increasing evidence demonstrated that voluntary wheel running promotes cognitive function, little is known on how different types of voluntary wheel running affect cognitive function in elderly populations. We investigated the effects of various voluntary wheel-running types on adult hippocampal neurogenesis and...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00177

    authors: Huang YQ,Wu C,He XF,Wu D,He X,Liang FY,Dai GY,Pei Z,Xu GQ,Lan Y

    更新日期:2018-06-26 00:00:00

  • Studying subcellular detail in fixed astrocytes: dissociation of morphologically intact glial cells (DIMIGs).

    abstract::Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs), since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00054

    authors: Haseleu J,Anlauf E,Blaess S,Endl E,Derouiche A

    更新日期:2013-05-03 00:00:00

  • Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex.

    abstract::The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00107

    authors: Zhao R,Zhou H,Huang L,Xie Z,Wang J,Gan WB,Yang G

    更新日期:2018-04-20 00:00:00

  • WhiskEras: A New Algorithm for Accurate Whisker Tracking.

    abstract::Rodents engage in active touch using their facial whiskers: they explore their environment by making rapid back-and-forth movements. The fast nature of whisker movements, during which whiskers often cross each other, makes it notoriously difficult to track individual whiskers of the intact whisker field. We present he...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.588445

    authors: Betting JLF,Romano V,Al-Ars Z,Bosman LWJ,Strydis C,De Zeeuw CI

    更新日期:2020-11-17 00:00:00

  • Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat.

    abstract::To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00384

    authors: Gao F,Song X,Zhu D,Wang X,Hao A,Nadler JV,Zhan RZ

    更新日期:2015-10-07 00:00:00

  • Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures.

    abstract::Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00180

    authors: Caviedes A,Varas-Godoy M,Lafourcade C,Sandoval S,Bravo-Alegria J,Kaehne T,Massmann A,Figueroa JP,Nualart F,Wyneken U

    更新日期:2017-07-04 00:00:00

  • Frequency dependence of CA3 spike phase response arising from h-current properties.

    abstract::The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00263

    authors: Borel M,Guadagna S,Jang HJ,Kwag J,Paulsen O

    更新日期:2013-12-25 00:00:00

  • Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice.

    abstract::The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00369

    authors: Kelly EA,Russo AS,Jackson CD,Lamantia CE,Majewska AK

    更新日期:2015-09-22 00:00:00

  • Ciliobrevins as tools for studying dynein motor function.

    abstract::Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and fla...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00252

    authors: Roossien DH,Miller KE,Gallo G

    更新日期:2015-07-06 00:00:00