Effects of Voluntary Wheel-Running Types on Hippocampal Neurogenesis and Spatial Cognition in Middle-Aged Mice.

Abstract:

:While increasing evidence demonstrated that voluntary wheel running promotes cognitive function, little is known on how different types of voluntary wheel running affect cognitive function in elderly populations. We investigated the effects of various voluntary wheel-running types on adult hippocampal neurogenesis and spatial cognition in middle-aged mice. Male C57BL6 and Thy1-green fluorescent protein (GFP) transgenic mice (13 months) were equally assigned to one of the following groups: (1) T1: no voluntary wheel running; (2) T2: intermittent voluntary wheel running; and (3) T3: continuous voluntary wheel running. The Thy1-GFP transgenic mice were used to specifically label granule cells, since Thy-1 is a promoter for neuronal expression. Behavioral evaluations suggested that intermittent voluntary wheel running improved Morris water maze performance in middle-aged mice. The number of BrdU-positive cells was significantly higher in both intermittent and continuous voluntary wheel running compared with no voluntary wheel running. However, only intermittent voluntary wheel running facilitated the newborn cells to differentiate into granule cells, while newborn cells tended to differentiate into astrocytes and repopulation of microglia was also enhanced in the continuous voluntary wheel-running group. These results indicated that intermittent voluntary exercise may be more beneficial for enhancing spatial memory. Effective improvement of hippocampal neurogenesis was also caused by intermittent voluntary wheel running in middle-aged mice.

journal_name

Front Cell Neurosci

authors

Huang YQ,Wu C,He XF,Wu D,He X,Liang FY,Dai GY,Pei Z,Xu GQ,Lan Y

doi

10.3389/fncel.2018.00177

subject

Has Abstract

pub_date

2018-06-26 00:00:00

pages

177

issn

1662-5102

journal_volume

12

pub_type

杂志文章
  • Activated PPARγ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity.

    abstract::Type 2 diabetes increases the risk for dementia, including Alzheimer's disease (AD). Pioglitazone (Pio), a pharmacological agonist of the peroxisome proliferator-activated receptor γ (PPARγ), improves insulin sensitivity and has been suggested to have potential in the management of AD symptoms, albeit through mostly u...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00239

    authors: Moosecker S,Gomes P,Dioli C,Yu S,Sotiropoulos I,Almeida OFX

    更新日期:2019-06-12 00:00:00

  • Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice.

    abstract::The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00369

    authors: Kelly EA,Russo AS,Jackson CD,Lamantia CE,Majewska AK

    更新日期:2015-09-22 00:00:00

  • Inhibition of COX2/PGD2-Related Autophagy Is Involved in the Mechanism of Brain Injury in T2DM Rat.

    abstract::The present study was designed to observe the effect of COX2/PGD2-related autophagy on brain injury in type 2 diabetes rats. The histopathology was detected by haematoxylin-eosin staining. The learning and memory functions were evaluated by Morris water maze. The levels of insulin and PGD2 were measured by enzyme-link...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00068

    authors: Yang Y,Chen Q,Zhao Q,Luo Y,Xu Y,Du W,Wang H,Li H,Yang L,Hu C,Zhang J,Li Y,Xia H,Chen Z,Ma J,Tian X,Yang J

    更新日期:2019-02-27 00:00:00

  • Protection after stroke: cellular effectors of neurovascular unit integrity.

    abstract::Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood fl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00231

    authors: Posada-Duque RA,Barreto GE,Cardona-Gomez GP

    更新日期:2014-08-14 00:00:00

  • Improved Generation of Induced Pluripotent Stem Cells From Hair Derived Keratinocytes - A Tool to Study Neurodevelopmental Disorders as ADHD.

    abstract::In the last decade, there is an increasing application of induced pluripotent stem cells (iPSCs) for disease modeling. The iPSC technology enables the study of patient-specific neuronal cell lines in vitro to evaluate dysfunction at the cellular level and identify the responsible genetic factors. This approach might b...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00321

    authors: Re S,Dogan AA,Ben-Shachar D,Berger G,Werling AM,Walitza S,Grünblatt E

    更新日期:2018-09-25 00:00:00

  • Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma.

    abstract::Loss of auditory sensory hair cells (HCs) is the most common cause of hearing loss. This review addresses the signaling pathways that are involved in the programmed and necrotic cell death of auditory HCs that occur in response to ototoxic and traumatic stressor events. The roles of inflammatory processes, oxidative s...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00096

    authors: Dinh CT,Goncalves S,Bas E,Van De Water TR,Zine A

    更新日期:2015-03-31 00:00:00

  • The WWOX Gene Influences Cellular Pathways in the Neuronal Differentiation of Human Neural Progenitor Cells.

    abstract::The brain is the most functionally organized structure of all organs. It manages behavior, perception and higher cognitive functions. The WWOX gene is non-classical tumor suppressor gene, which has been shown to have an impact on proliferation, apoptosis and migration processes. Moreover, genetic aberrations in WWOX i...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00391

    authors: Kośla K,Płuciennik E,Styczeń-Binkowska E,Nowakowska M,Orzechowska M,Bednarek AK

    更新日期:2019-08-30 00:00:00

  • Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides.

    abstract::The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2) is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3) conjugated to the HIV transactivator of transcription (TAT) protein's cationic cell penetrating peptide (CPP) motif protected neurons in the face of toxic leve...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00471

    authors: Moutal A,François-Moutal L,Brittain JM,Khanna M,Khanna R

    更新日期:2015-01-26 00:00:00

  • TRH Analog, Taltirelin Improves Motor Function of Hemi-PD Rats Without Inducing Dyskinesia via Sustained Dopamine Stimulating Effect.

    abstract::Thyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson's disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substanti...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00417

    authors: Zheng C,Chen G,Tan Y,Zeng W,Peng Q,Wang J,Cheng C,Yang X,Nie S,Xu Y,Zhang Z,Papa SM,Ye K,Cao X

    更新日期:2018-11-13 00:00:00

  • Implications of glial nitric oxide in neurodegenerative diseases.

    abstract::Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00322

    authors: Yuste JE,Tarragon E,Campuzano CM,Ros-Bernal F

    更新日期:2015-08-17 00:00:00

  • Quantifying mechanical force in axonal growth and guidance.

    abstract::Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connection...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00359

    authors: Athamneh AI,Suter DM

    更新日期:2015-09-16 00:00:00

  • The Glycolytic Metabolite, Fructose-1,6-bisphosphate, Blocks Epileptiform Bursts by Attenuating Voltage-Activated Calcium Currents in Hippocampal Slices.

    abstract::Manipulation of metabolic pathways (e.g., ketogenic diet (KD), glycolytic inhibition) alters neural excitability and represents a novel strategy for treatment of drug-refractory seizures. We have previously shown that inhibition of glycolysis suppresses epileptiform activity in hippocampal slices. In the present study...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00168

    authors: Shao LR,Wang G,Stafstrom CE

    更新日期:2018-06-15 00:00:00

  • PHF-Core Tau as the Potential Initiating Event for Tau Pathology in Alzheimer's Disease.

    abstract::Worldwide, around 50 million people have dementia. Alzheimer's disease (AD) is the most common type of dementia and one of the major causes of disability and dependency among the elderly worldwide. Clinically, AD is characterized by impaired memory accompanied by other deficiencies in the cognitive domain. Neuritic pl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00247

    authors: Luna-Viramontes NI,Campa-Córdoba BB,Ontiveros-Torres MÁ,Harrington CR,Villanueva-Fierro I,Guadarrama-Ortíz P,Garcés-Ramírez L,de la Cruz F,Hernandes-Alejandro M,Martínez-Robles S,González-Ballesteros E,Pacheco-Herrero M,Luna-Muño

    更新日期:2020-09-10 00:00:00

  • Post-translational regulation of P2X receptor channels: modulation by phospholipids.

    abstract::P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membran...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00226

    authors: Bernier LP,Ase AR,Séguéla P

    更新日期:2013-11-25 00:00:00

  • Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection.

    abstract::Evidence of significant hearing loss during the early days of use of cisplatin as a chemotherapeutic agent in cancer patients has stimulated research into the causes and treatment of this side effect. It has generally been accepted that hearing loss is produced by excessive generation of reactive oxygen species (ROS) ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2017.00338

    authors: Sheth S,Mukherjea D,Rybak LP,Ramkumar V

    更新日期:2017-10-27 00:00:00

  • Enhanced Axonal Extension of Subcortical Projection Neurons Isolated from Murine Embryonic Cortex using Neuropilin-1.

    abstract::The cerebral cortical tissue of murine embryo and pluripotent stem cell (PSC)-derived neurons can survive in the brain and extend axons to the spinal cord. For efficient cell integration to the corticospinal tract (CST) after transplantation, the induction or selection of cortical motor neurons is important. However, ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00123

    authors: Sano N,Shimogawa T,Sakaguchi H,Ioroi Y,Miyawaki Y,Morizane A,Miyamoto S,Takahashi J

    更新日期:2017-05-01 00:00:00

  • GABA Neuronal Deletion of Shank3 Exons 14-16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities.

    abstract::Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00341

    authors: Yoo T,Cho H,Lee J,Park H,Yoo YE,Yang E,Kim JY,Kim H,Kim E

    更新日期:2018-10-09 00:00:00

  • Mild Endoplasmic Reticulum Stress Protects Against Lipopolysaccharide-Induced Astrocytic Activation and Blood-Brain Barrier Hyperpermeability.

    abstract::Recent research has revealed that uncontrolled chronic neuroinflammation is closely associated with diverse neurodegenerative diseases, by impairing blood-brain barrier (BBB) function and astrocytic reaction. Endoplasmic reticulum (ER) stress is conventionally linked to the loss of neuronal structure and function and ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00222

    authors: Wang Y,Chen Y,Zhou Q,Xu J,Qian Q,Ni P,Qian Y

    更新日期:2018-07-27 00:00:00

  • G Protein-Coupled Receptor Heteromers as Putative Pharmacotherapeutic Targets in Autism.

    abstract::A major challenge in the development of pharmacotherapies for autism is the failure to identify pathophysiological mechanisms that could be targetable. The majority of developing strategies mainly aim at restoring the brain excitatory/inhibitory imbalance described in autism, by targeting glutamate or GABA receptors. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2020.588662

    authors: DelaCuesta-Barrutia J,Peñagarikano O,Erdozain AM

    更新日期:2020-10-30 00:00:00

  • A Survey of Retinal Remodeling.

    abstract::Up to 15 years ago, bibliographic searches based on keywords such as "photoreceptor degeneration, inner retina" or "photoreceptor degeneration, second order neurons" returned only a handful of papers, as the field was dominated by the general assumption that retinal degeneration had direct effects on the sole populati...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00494

    authors: Strettoi E

    更新日期:2015-12-23 00:00:00

  • Contribution of sublinear and supralinear dendritic integration to neuronal computations.

    abstract::Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00067

    authors: Tran-Van-Minh A,Cazé RD,Abrahamsson T,Cathala L,Gutkin BS,DiGregorio DA

    更新日期:2015-03-24 00:00:00

  • MicroRNA-210 Protects PC-12 Cells Against Hypoxia-Induced Injury by Targeting BNIP3.

    abstract::MicroRNA (miR)-210 is the most consistently and predominantly up-regulated miR in response to hypoxia in multiple cancer cells. The roles of miR-210 in rat adrenal gland pheochromocytoma (PC-12) cells remain unknown. We aimed to explore the possible effect of miR-210 in neonatal brain injury. We explored the potential...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00285

    authors: Luan Y,Zhang X,Zhang Y,Dong Y

    更新日期:2017-09-22 00:00:00

  • Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer's disease diagnosis.

    abstract::The hippocampus is one of the earliest affected brain regions in Alzheimer's disease (AD) and its dysfunction is believed to underlie the core feature of the disease-memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpo...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00095

    authors: Maruszak A,Thuret S

    更新日期:2014-03-31 00:00:00

  • Brain-Derived Neurotrophic Factor (BDNF) Regulates Rab5-Positive Early Endosomes in Hippocampal Neurons to Induce Dendritic Branching.

    abstract::Neurotrophin receptors use endosomal pathways for signaling in neurons. However, how neurotrophins regulate the endosomal system for proper signaling is unknown. Rabs are monomeric GTPases that act as molecular switches to regulate membrane trafficking by binding a wide range of effectors. Among the Rab GTPases, Rab5 ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00493

    authors: Moya-Alvarado G,Gonzalez A,Stuardo N,Bronfman FC

    更新日期:2018-12-17 00:00:00

  • Sodium-Calcium Exchanger Can Account for Regenerative Ca2+ Entry in Thin Astrocyte Processes.

    abstract::Calcium transients in thin astrocytic processes can be important in synaptic plasticity, but their mechanism is not completely understood. Clearance of synaptic glutamate leads to increase in astrocytic sodium. This can electrochemically favor the reverse mode of the Na/Ca-exchanger (NCX) and allow calcium into the ce...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00250

    authors: Brazhe AR,Verisokin AY,Verveyko DV,Postnov DE

    更新日期:2018-08-14 00:00:00

  • 3D Ultrastructure of the Cochlear Outer Hair Cell Lateral Wall Revealed By Electron Tomography.

    abstract::Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully u...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00560

    authors: Triffo WJ,Palsdottir H,Song J,Morgan DG,McDonald KL,Auer M,Raphael RM

    更新日期:2019-12-20 00:00:00

  • Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    abstract::It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00043

    authors: Andrews AM,Lutton EM,Merkel SF,Razmpour R,Ramirez SH

    更新日期:2016-02-29 00:00:00

  • Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures.

    abstract::Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00180

    authors: Caviedes A,Varas-Godoy M,Lafourcade C,Sandoval S,Bravo-Alegria J,Kaehne T,Massmann A,Figueroa JP,Nualart F,Wyneken U

    更新日期:2017-07-04 00:00:00

  • IFN-γ Producing Th1 Cells Induce Different Transcriptional Profiles in Microglia and Astrocytes.

    abstract::Autoreactive T cells that infiltrate into the central nervous system (CNS) are believed to have a significant role in mediating the pathology of neuroinflammatory diseases like multiple sclerosis. Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of neuroinflammatory processes. O...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00352

    authors: Prajeeth CK,Dittrich-Breiholz O,Talbot SR,Robert PA,Huehn J,Stangel M

    更新日期:2018-10-10 00:00:00

  • HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat Neocortex.

    abstract::Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00109

    authors: Albertson AJ,Bohannon AS,Hablitz JJ

    更新日期:2017-04-19 00:00:00