A circular model for song motor control in Serinus canaria.

Abstract:

:Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture.

journal_name

Front Comput Neurosci

authors

Alonso RG,Trevisan MA,Amador A,Goller F,Mindlin GB

doi

10.3389/fncom.2015.00041

subject

Has Abstract

pub_date

2015-04-07 00:00:00

pages

41

issn

1662-5188

journal_volume

9

pub_type

杂志文章
  • A Spiking Neural Model of HT3D for Corner Detection.

    abstract::Obtaining good quality image features is of remarkable importance for most computer vision tasks. It has been demonstrated that the first layers of the human visual cortex are devoted to feature detection. The need for these features has made line, segment, and corner detection one of the most studied topics in comput...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00037

    authors: Bachiller-Burgos P,Manso LJ,Bustos P

    更新日期:2018-06-01 00:00:00

  • Model selection for the extraction of movement primitives.

    abstract::A wide range of blind source separation methods have been used in motor control research for the extraction of movement primitives from EMG and kinematic data. Popular examples are principal component analysis (PCA), independent component analysis (ICA), anechoic demixing, and the time-varying synergy model (d'Avella ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00185

    authors: Endres DM,Chiovetto E,Giese MA

    更新日期:2013-12-20 00:00:00

  • Short-Term Facilitation may Stabilize Parametric Working Memory Trace.

    abstract::Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory (WM), but require fine tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefor...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00040

    authors: Itskov V,Hansel D,Tsodyks M

    更新日期:2011-10-24 00:00:00

  • Density Visualization Pipeline: A Tool for Cellular and Network Density Visualization and Analysis.

    abstract::Neuron classification is an important component in analyzing network structure and quantifying the effect of neuron topology on signal processing. Current quantification and classification approaches rely on morphology projection onto lower-dimensional spaces. In this paper a 3D visualization and quantification tool i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00042

    authors: Grein S,Qi G,Queisser G

    更新日期:2020-06-26 00:00:00

  • Segmental Bayesian estimation of gap-junctional and inhibitory conductance of inferior olive neurons from spike trains with complicated dynamics.

    abstract::The inverse problem for estimating model parameters from brain spike data is an ill-posed problem because of a huge mismatch in the system complexity between the model and the brain as well as its non-stationary dynamics, and needs a stochastic approach that finds the most likely solution among many possible solutions...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00056

    authors: Hoang H,Yamashita O,Tokuda IT,Sato MA,Kawato M,Toyama K

    更新日期:2015-05-21 00:00:00

  • Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits.

    abstract::Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of sho...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00075

    authors: Costa RP,Sjöström PJ,van Rossum MC

    更新日期:2013-06-06 00:00:00

  • Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements.

    abstract::Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the informa...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00112

    authors: Kapucu FE,Välkki I,Mikkonen JE,Leone C,Lenk K,Tanskanen JM,Hyttinen JA

    更新日期:2016-10-18 00:00:00

  • Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input.

    abstract::The correlation structure of neural activity is believed to play a major role in the encoding and possibly the decoding of information in neural populations. Recently, several methods were developed for exactly controlling the correlation structure of multi-channel synthetic spike trains (Brette, 2009; Krumin and Shoh...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00147

    authors: Krumin M,Reutsky I,Shoham S

    更新日期:2010-11-19 00:00:00

  • Revealing the Computational Meaning of Neocortical Interarea Signals.

    abstract::To understand the function of the neocortex, which is a hierarchical distributed network, it is useful giving meaning to the signals transmitted between these areas from the computational viewpoint. The overall anatomical structure or organs related to this network, including the neocortex, thalamus, and basal ganglia...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00074

    authors: Yamakawa H

    更新日期:2020-08-18 00:00:00

  • Statistical physics of pairwise probability models.

    abstract::Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the mean values and correlations betw...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.022.2009

    authors: Roudi Y,Aurell E,Hertz JA

    更新日期:2009-11-17 00:00:00

  • The role of pulvinar in the transmission of information in the visual hierarchy.

    abstract::VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down proces...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00029

    authors: Cortes N,van Vreeswijk C

    更新日期:2012-05-28 00:00:00

  • Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation.

    abstract::Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algori...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00017

    authors: Estienne T,Lerousseau M,Vakalopoulou M,Alvarez Andres E,Battistella E,Carré A,Chandra S,Christodoulidis S,Sahasrabudhe M,Sun R,Robert C,Talbot H,Paragios N,Deutsch E

    更新日期:2020-03-20 00:00:00

  • Analog Signaling With the "Digital" Molecular Switch CaMKII.

    abstract::Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell signaling by decoding inputs into either high or low states of activity; because the high activation state can be turned on and persist after the input ceases, these switches have earned a reputation as "digital." Although this on/o...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00092

    authors: Clarke SE

    更新日期:2018-11-22 00:00:00

  • Generation of Granule Cell Dendritic Morphologies by Estimating the Spatial Heterogeneity of Dendritic Branching.

    abstract::Biological realism of dendritic morphologies is important for simulating electrical stimulation of brain tissue. By adding point process modeling and conditional sampling to existing generation strategies, we provide a novel means of reproducing the nuanced branching behavior that occurs in different layers of granule...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00023

    authors: Chou ZZ,Yu GJ,Berger TW

    更新日期:2020-04-09 00:00:00

  • Neural variability, or lack thereof.

    abstract::We do not claim that the brain is completely deterministic, and we agree that noise may be beneficial in some cases. But we suggest that neuronal variability may be often overestimated, due to uncontrolled internal variables, and/or the use of inappropriate reference times. These ideas are not new, but should be re-ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00007

    authors: Masquelier T

    更新日期:2013-02-25 00:00:00

  • Synaptic encoding of temporal contiguity.

    abstract::Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabiliti...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00032

    authors: Ostojic S,Fusi S

    更新日期:2013-04-12 00:00:00

  • Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite.

    abstract::Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interac...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00110

    authors: Kim H,Heckman CJ

    更新日期:2014-09-09 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00021

    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Stability constraints on large-scale structural brain networks.

    abstract::Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00031

    authors: Gray RT,Robinson PA

    更新日期:2013-04-12 00:00:00

  • Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    abstract::Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00062

    authors: Daemi M,Harris LR,Crawford JD

    更新日期:2016-06-23 00:00:00

  • A high-capacity model for one shot association learning in the brain.

    abstract::We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00140

    authors: Einarsson H,Lengler J,Steger A

    更新日期:2014-11-07 00:00:00

  • A Role for Electrotonic Coupling Between Cortical Pyramidal Cells.

    abstract::Many brain regions communicate information through synchronized network activity. Electrical coupling among the dendrites of interneurons in the cortex has been implicated in forming and sustaining such activity in the cortex. Evidence for the existence of electrical coupling among cortical pyramidal cells, however, h...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00033

    authors: Crodelle J,Zhou D,Kovačič G,Cai D

    更新日期:2019-05-28 00:00:00

  • Learning Generative State Space Models for Active Inference.

    abstract::In this paper we investigate the active inference framework as a means to enable autonomous behavior in artificial agents. Active inference is a theoretical framework underpinning the way organisms act and observe in the real world. In active inference, agents act in order to minimize their so called free energy, or p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.574372

    authors: Çatal O,Wauthier S,De Boom C,Verbelen T,Dhoedt B

    更新日期:2020-11-16 00:00:00

  • On the role of spatial phase and phase correlation in vision, illusion, and cognition.

    abstract::Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00045

    authors: Gladilin E,Eils R

    更新日期:2015-04-21 00:00:00

  • Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    abstract::In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activate...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00012

    authors: Xu K,Maidana JP,Caviedes M,Quero D,Aguirre P,Orio P

    更新日期:2017-03-10 00:00:00

  • Emergence of Relaxation Oscillations in Neurons Interacting With Non-stationary Ambient GABA.

    abstract::Dynamics of a homogeneous neural population interacting with active extracellular medium were considered. The corresponding mathematical model was tuned specifically to describe the behavior of interneurons with tonic GABA conductance under the action of non-stationary ambient GABA. The feedback provided by the GABA m...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00019

    authors: Adamchik DA,Matrosov VV,Kazantsev VB

    更新日期:2018-04-05 00:00:00

  • Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.

    abstract::Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00058

    authors: Teplitzky BA,Zitella LM,Xiao Y,Johnson MD

    更新日期:2016-06-10 00:00:00

  • Topological View of Flows Inside the BOLD Spontaneous Activity of the Human Brain.

    abstract::Spatio-temporal brain activities with variable delay detectable in resting-state functional magnetic resonance imaging (rs-fMRI) give rise to highly reproducible structures, termed cortical lag threads, that propagate from one brain region to another. Using a computational topology of data approach, we found that pers...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00034

    authors: Don APH,Peters JF,Ramanna S,Tozzi A

    更新日期:2020-04-22 00:00:00

  • Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    abstract::The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the di...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00076

    authors: Chua Y,Morrison A

    更新日期:2016-07-22 00:00:00

  • Neuronal Degeneration Impairs Rhythms Between Connected Microcircuits.

    abstract::Synchronization of neural activity across brain regions is critical to processes that include perception, learning, and memory. After traumatic brain injury (TBI), neuronal degeneration is one possible effect and can alter communication between neural circuits. Consequently, synchronization between neurons may change ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00018

    authors: Schumm SN,Gabrieli D,Meaney DF

    更新日期:2020-03-03 00:00:00