1α,25(OH)2D3 attenuates IL-6 and IL-1β-mediated inflammatory responses in macrophage conditioned medium-stimulated human white preadipocytes by modulating p44/42 MAPK and NF-κB signaling pathways.

Abstract:

Background:Metabolic syndrome is characterized by macrophage infiltration and inflammatory responses-metaflammation in adipose tissue. IL-6 and IL-1β could mediate the inflammatory responses in macrophage stimulated-preadipocytes by modulating MAPK and NF-κB pathways. To test this hypothesis we used antibodies to block IL-6 and IL-1β action in macrophage conditioned medium (MacCM)-stimulated human white preadipocytes. Moreover, as interventions that prevent this could potentially be used to treat or prevent metabolic syndrome, and 1α,25(OH)2D3 has previously been reported to exert an anti-inflammatory action on macrophage-stimulated adipocytes, in this study we also investigated whether 1α,25(OH)2D3 could attenuate inflammatory responses in MacCM-stimulated preadipocytes, and explored the potential anti-inflammatory mechanisms. Methods:Human white preadipocytes were cultured with 25% MacCM for 24 h to elicit inflammatory responses. This was confirmed by measuring the concentrations and mRNA levels of major pro-inflammatory factors [IL-1β, IL-6, IL-8, monocyte chemoattractant protein (MCP)-1 and regulated on activation, normal T cell expressed and secreted (RANTES)] by ELISA and qPCR, respectively. IL-6 and IL-1β actions were blocked using IL-6 antibody (300 ng/ml) and IL-1β antibody (15 μg/ml), respectively. Potential anti-inflammatory effects of 1α,25(OH)2D3 were investigated by pre-treatment and treatment of 1α,25(OH)2D3 (0.01 to 10 nM) for 48 h in MacCM-stimulated preadipocytes. In parallel, western blotting was used to determine inflammatory signaling molecules including relA of the NF-κB pathway and p44/42 MAPK modified during these processes. Results:MacCM enhanced the secretion and gene expression of IL-1β, IL-6, IL-8, MCP-1 and RANTES by increasing the phosphorylation levels of relA and p44/42 MAPK in preadipocytes, whereas blocking IL-6 and IL-1β action inhibited the inflammatory responses by decreasing p44/42 MAPK and relA phosphorylation, respectively. Furthermore, 10 nM of 1α,25(OH)2D3 generally inhibited the IL-6 and IL-1β-mediated inflammatory responses, and reduced both p44/42 MAPK and relA phosphorylation in MacCM-stimulated preadipocytes. Conclusions:1α,25(OH)2D3 attenuates IL-6 and IL-1β-mediated inflammatory responses, probably by inhibiting p44/42 MAPK and relA phosphorylation in MacCM-stimulated human white preadipocytes.

journal_name

Diabetol Metab Syndr

authors

Zhu J,Bing C,Wilding JPH

doi

10.1186/s13098-019-0405-2

subject

Has Abstract

pub_date

2019-01-25 00:00:00

pages

9

issn

1758-5996

pii

405

journal_volume

11

pub_type

杂志文章