Calcium binding peptides from alpha-lactalbumin: implications for protein folding and stability.

Abstract:

:The calcium binding protein alpha-lactalbumin folds via a molten globule intermediate. Calcium does not bind strongly to the unfolded protein or the molten globule, but does bind to the transition state between the molten globule and the native protein. Of interest are the structures formed in the transition state that promote calcium binding. To study the importance of local secondary structure on calcium binding, we have synthesized two peptides corresponding to the calcium binding site that include the flanking C-helix and 3(10)-helix. The first peptide, elbow-A, consists of residues 72-100 from bovine alpha-lactalbumin, but with Cys 73, Cys 77, and Cys 91 replaced by alanines. In the second peptide, denoted elbow, the cysteines at position 73 and 91 are included and the nativelike disulfide bond is formed. Both peptides are monomeric and unstructured in aqueous solution and bind calcium weakly with apparent K(d)'s on the order of 10(-2) M. In 50% trifluoroethanol (v/v), the peptides are 45% helical as judged by CD. NMR studies performed on elbow and elbow-A in TFE indicate that the helical structure is confined to the C-helix. In this solvent system elbow binds calcium one-to-one with a K(d) of 50 microM. Removing the disulfide bond reduces, but does not eliminate calcium binding (K(d) = 170 microM in 50% TFE). These results suggest that formation of the C-helix promotes calcium binding and may be a key determinant of calcium binding in the transition state.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Kuhlman B,Boice JA,Wu WJ,Fairman R,Raleigh DP

doi

10.1021/bi962901j

subject

Has Abstract

pub_date

1997-04-15 00:00:00

pages

4607-15

issue

15

eissn

0006-2960

issn

1520-4995

pii

bi962901j

journal_volume

36

pub_type

杂志文章