Gene essentiality of Tubgcp4: dosage effect and autophagy regulation in retinal photoreceptors.

Abstract:

:Photoreceptor degeneration and damages often lead to blindness, and the underlying molecular mechanisms are largely unknown. There is also a lot of missing information for establishing the role of macroautophagy/autophagy in the retinopathy. We recently generated knockout mouse lines of the essential gene Tubgcp4 (tubulin, gamma complex associated protein 4) and revealed an interplay between essential genes and autophagy regulation. Complete knockout of Tubgcp4 in mice results in early embryonic lethality due to abnormal spindle assembly, whereas heterozygotes are viable through dosage compensation from one wild-type allele, suggesting a dosage effect of the essential gene. However, haploinsufficiency of TUBGCP4 impairs assembly of TUBG/γ-tubulin ring complexes and disturbs autophagy homeostasis of the retina, with pathological phenotypes of photoreceptor degeneration and a decrease of electroretinography responses. TUBGCP4 can inhibit autophagy by competing with ATG3 to interact with ATG7, thus interfering with lipidation of LC3B. Taken together, these findings demonstrate dosage effect of the essential gene Tubgcp4 for viability of mutant mice, and suggest key roles of TUBGCP4 in embryo development and retinal homeostasis by autophagy regulation. Abbreviations: ATG3: autophagy related 3; ATG7: autophagy related 7; CRISPR: clustered regularly interspaced short palindromic repeats; ERG: electroretinography; HCQ: hydroxychloroquine; LC3B: microtubule-associated protein 1 light chain 3 beta; NFE2L2: nuclear factor, erythroid 2 like 2; ONL: outer nuclear layer; PPARGC1A: peroxisome proliferator-activated receptor gamma coactivator-1 alpha; RB1CC1: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TUBGCP: tubulin, gamma complex associated protein; TUBGRC/γ: TuRCs gamma-tubulin ring complexes.

journal_name

Autophagy

journal_title

Autophagy

authors

Xu X,Shang D,Cheng H,Klionsky DJ,Zhou R

doi

10.1080/15548627.2019.1647023

subject

Has Abstract

pub_date

2019-10-01 00:00:00

pages

1834-1837

issue

10

eissn

1554-8627

issn

1554-8635

journal_volume

15

pub_type

杂志文章
  • Purification of autophagosomes from rat hepatocytes.

    abstract::To facilitate the purification of rat liver autophagosomes, isolated rat hepatocytes are first incubated for 2 h at 37°C with vinblastine, which induces autophagosome accumulation by blocking the fusion of these organelles with endosomes and lysosomes. The hepatocytes are then electrodisrupted and homogenized, and the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.4.11272

    authors: Seglen PO,Brinchmann MF

    更新日期:2010-05-01 00:00:00

  • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding.

    abstract::Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.7.15491

    authors: Dunlop EA,Hunt DK,Acosta-Jaquez HA,Fingar DC,Tee AR

    更新日期:2011-07-01 00:00:00

  • Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy.

    abstract::The European autophagy consortium Driving next-generation autophagy researchers towards translation (DRIVE) held its kick-off meeting in Groningen on the 14th and 15th of June 2018. This Marie Skłodowska-Curie Early Training Network was approved under the European Union's Horizon 2020 Research and Innovation Program a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1515532

    authors: Kraft C,Boya P,Codogno P,Elazar Z,Eskelinen EL,Farrés J,Kirkin V,Jungbluth H,Martinez A,Pless O,Primard C,Proikas-Cezanne T,Simonsen A,Reggiori F

    更新日期:2019-02-01 00:00:00

  • The molecular mechanism of Atg13 function in autophagy induction: What is hidden behind the data?

    abstract::Atg13 is an essential subunit of the Atg1 autophagy initiation complex in yeast and its mammalian counterpart, ATG13, is indispensable for autophagy induction by the ULK1 complex. The N terminus of the protein folds into a HORMA domain, an architecture that has been revealed by crystallography. 1-4 In human cells, the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1277312

    authors: Popelka H,Klionsky DJ

    更新日期:2017-03-04 00:00:00

  • Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial.

    abstract::A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorder...

    journal_title:Autophagy

    pub_type: 临床试验,杂志文章

    doi:10.1080/15548627.2016.1231279

    authors: Castagnaro S,Pellegrini C,Pellegrini M,Chrisam M,Sabatelli P,Toni S,Grumati P,Ripamonti C,Pratelli L,Maraldi NM,Cocchi D,Righi V,Faldini C,Sandri M,Bonaldo P,Merlini L

    更新日期:2016-12-01 00:00:00

  • Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    abstract::The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.7.15596

    authors: Yang DS,Stavrides P,Mohan PS,Kaushik S,Kumar A,Ohno M,Schmidt SD,Wesson DW,Bandyopadhyay U,Jiang Y,Pawlik M,Peterhoff CM,Yang AJ,Wilson DA,St George-Hyslop P,Westaway D,Mathews PM,Levy E,Cuervo AM,Nixon RA

    更新日期:2011-07-01 00:00:00

  • Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy.

    abstract::Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1098798

    authors: Wang Y,Cai S,Yin L,Shi K,Xia X,Zhou Y,Yu J,Zhou J

    更新日期:2015-11-02 00:00:00

  • Painting a picture of autophagy in Drosophila.

    abstract::Drawing as a way of understanding things better/easier is in human nature, from textbook images through the models and graphical abstracts published in scientific papers to chalk talks during the academic job interview process. As a molecular cell biologist and geneticist, I always find it easier to show a microscopy ...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2019.1659624

    authors: Juhász G

    更新日期:2019-11-01 00:00:00

  • The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation.

    abstract::The initiation of macroautophagy/autophagy is tightly regulated by the upstream ULK1 kinase complex, which affects many downstream factors including the PtdIns3K complex. The phosphorylation of the right position at the right time on downstream molecules is governed by proper complex formation. One component of the UL...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1504716

    authors: Kim BW,Jin Y,Kim J,Kim JH,Jung J,Kang S,Kim IY,Kim J,Cheong H,Song HK

    更新日期:2018-01-01 00:00:00

  • Potential role of autophagy in behavioral changes of the flank organ.

    abstract::The flank organ of the Syrian hamster, which shows a biodynamic response to androgen stimulation, is considered a good model for studying the androgen effect on sebaceous gland and hair. This organ is susceptible to programmed cell death (PCD), a prominent feature associated with sexual organ adjustment. We have recen...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.2.7619

    authors: Vega-Naredo I,Tomas-Zapico C,Coto-Montes A

    更新日期:2009-02-01 00:00:00

  • AP-4: autophagy-four mislocalized proteins in axons.

    abstract::Neurons are highly polarized cells composed of two distinct domains, the axon and the somatodendritic domain. Although AMPA-type glutamate receptors, which mediate fast excitatory neurotransmission in the vertebrate CNS, are preferentially expressed in the somatodendritic domain, the molecular mechanisms underlying su...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6493

    authors: Matsuda S,Yuzaki M

    更新日期:2008-08-01 00:00:00

  • Autophagy in development and stress responses of plants.

    abstract::The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.2092

    authors: Bassham DC,Laporte M,Marty F,Moriyasu Y,Ohsumi Y,Olsen LJ,Yoshimoto K

    更新日期:2006-01-01 00:00:00

  • Autophagy-mediated regulation of macrophages and its applications for cancer.

    abstract::Autophagy is a highly conserved homeostatic pathway that plays an important role in tumor development and progression by acting on cancer cells in a cell-autonomous mechanism. However, the solid tumor is not an island, but rather an ensemble performance that includes nonmalignant stromal cells, such as macrophages. A ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.26927

    authors: Chen P,Cescon M,Bonaldo P

    更新日期:2014-02-01 00:00:00

  • Oncogene-induced autophagy and the Goldilocks principle.

    abstract::Although several oncogenes enhance autophagic flux, the molecular mechanism and consequences of oncogene-induced autophagy remain to be clarified. We have recently shown that expression of oncogenic H-Ras (V12) promotes autophagy through upregulation of Beclin 1 and the BH3-only protein Noxa. H-Ras-expressing cells un...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.8.15821

    authors: Martin SJ

    更新日期:2011-08-01 00:00:00

  • Glycogen: the missing link in neuronal autophagy?

    abstract::Macroautophagy/autophagy is an intracellular degradative pathway that is often induced as a pro-survival process for cells under stress. A few recent reports establish the role of the glycogen metabolic pathway in neuronal cell survival in conditions such as oxidative stress and hypoxia, and the possible link between ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1802090

    authors: Onkar A,Sheshadri D,Ganesh S

    更新日期:2020-11-01 00:00:00

  • Long noncoding RNA CA7-4 promotes autophagy and apoptosis via sponging MIR877-3P and MIR5680 in high glucose-induced vascular endothelial cells.

    abstract::Vascular endothelial cells (VECs) that form the inner wall of blood vessels can be injured by high glucose-induced autophagy and apoptosis. Although the role of long noncoding RNA in regulating cell fate has received widespread attention, long noncoding RNAs (lncRNAs) that can both regulate autophagy and apoptosis nee...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1598750

    authors: Zhao X,Su L,He X,Zhao B,Miao J

    更新日期:2020-01-01 00:00:00

  • Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling.

    abstract::Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.9.15863

    authors: Wang K,Liu R,Li J,Mao J,Lei Y,Wu J,Zeng J,Zhang T,Wu H,Chen L,Huang C,Wei Y

    更新日期:2011-09-01 00:00:00

  • BECN1 is a new driver of ferroptosis.

    abstract::Ferroptosis is a form of regulated cell death caused by iron accumulation and oxidative injury. BECN1 is a key regulator of macroautophagy/autophagy, a catabolic process of degradation induced by starvation or other stressors. Our recent findings reveal a novel alternative mechanism by which BECN1 can promote ferropto...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2018.1513758

    authors: Kang R,Zhu S,Zeh HJ,Klionsky DJ,Tang D

    更新日期:2018-01-01 00:00:00

  • Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA.

    abstract::Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.9726

    authors: Montie HL,Merry DE

    更新日期:2009-11-01 00:00:00

  • SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    abstract::SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we repor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1291479

    authors: Liu H,Ma Y,He HW,Zhao WL,Shao RG

    更新日期:2017-05-04 00:00:00

  • Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages.

    abstract::Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4731

    authors: Petrovski G,Zahuczky G,Májai G,Fésüs L

    更新日期:2007-09-01 00:00:00

  • The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.

    abstract::The N-terminal amino acid of a protein is an essential determinant of ubiquitination and subsequent proteasomal degradation in the N-end rule pathway. Using para-chloroamphetamine (PCA), a specific inhibitor of the arginylation branch of the pathway (Arg/N-end rule pathway), we identified that blocking the Arg/N-end r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1222991

    authors: Jiang Y,Lee J,Lee JH,Lee JW,Kim JH,Choi WH,Yoo YD,Cha-Molstad H,Kim BY,Kwon YT,Noh SA,Kim KP,Lee MJ

    更新日期:2016-11-01 00:00:00

  • RAD001 (Everolimus) induces autophagy in acute lymphoblastic leukemia.

    abstract::The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs used in current treatment protocols of acute lymphoblastic leukemia (ALL). Despite the rapid cytoreduction achieved, serious acute and late complications are frequent, and resistance to chemotherapy develops. During t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8507

    authors: Crazzolara R,Bradstock KF,Bendall LJ

    更新日期:2009-07-01 00:00:00

  • Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon.

    abstract::ISG15 (ISG15 ubiquitin-like modifier), a ubiquitin-like protein, is one of the major type I IFN (interferon) effector systems. ISG15 can be conjugated to target proteins (ISGylation) via the stepwise action of E1, E2, and E3 enzymes. Conjugated ISG15 can be removed (deISGylated) from target proteins by USP18 (ubiquiti...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1023982

    authors: Xu D,Zhang T,Xiao J,Zhu K,Wei R,Wu Z,Meng H,Li Y,Yuan J

    更新日期:2015-04-03 00:00:00

  • UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy.

    abstract::The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in β-cells and increased β-cell apoptosis attributable at least in part to intracellular toxic oligomers of IAPP (islet amyloid polypeptide). β-cells of individuals with T2DM are also characterized by accumulation of polyubiquitinated proteins ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28478

    authors: Costes S,Gurlo T,Rivera JF,Butler PC

    更新日期:2014-06-01 00:00:00

  • Exploiting cell death pathways by an E. coli cytotoxin: autophagy as a double-edged sword for the host.

    abstract::Cytotoxic necrotizing factor 1 is a bacterial protein toxin from Escherichia coli that is able to activate the Rho GTPases and to hinder apoptosis and mitotic catastrophe. Upon exposure to toxin, cells undergo a complex framework of changes, including cytoskeleton remodeling and multinucleation. These cells also show ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2965

    authors: Fiorentini C,Malorni W

    更新日期:2006-10-01 00:00:00

  • LAMP2A as a therapeutic target in Parkinson disease.

    abstract::Abnormal aggregation of SNCA/?-synuclein plays a crucial role in Parkinson disease (PD) pathogenesis. SNCA levels determine its toxicity, and its accumulation, even to a small extent, may be a risk factor for neurodegeneration. One of the main pathways for SNCA degradation is chaperone-mediated autophagy (CMA), a sele...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26451

    authors: Xilouri M,Brekk OR,Kirik D,Stefanis L

    更新日期:2013-12-01 00:00:00

  • A second report from the EMBO conference on autophagy: mechanism, regulation and selectivity of autophagy.

    abstract::Some key questions being examined in the field of autophagy concern the origin of the membrane that forms the sequestering vesicle, the function of the related machinery, including the identification of new components and binding partners of previously identified autophagy-related proteins and the mechanism of autopha...

    journal_title:Autophagy

    pub_type:

    doi:10.4161/auto.6.1.10819

    authors: Vellai T,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • Rapamycin and Alzheimer disease: a double-edged sword?

    abstract::Numerous studies have reported that inhibition of MTOR (mechanistic target of rapamycin kinase) clearly reduces Alzheimer disease neuropathological hallmarks in mouse models. This has resulted in calls for the use of the MTOR inhibitor rapamycin for the treatment of dementia in humans. Unfortunately, intervention with...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1615823

    authors: Carosi JM,Sargeant TJ

    更新日期:2019-08-01 00:00:00

  • TARDBP/TDP-43 regulates autophagy in both MTORC1-dependent and MTORC1-independent manners.

    abstract::In a recent paper we addressed the mechanism by which defective autophagy contributes to TARDBP/TDP-43-mediated neurodegenerative disorders. We demonstrated that TARDBP regulates MTORC1-TFEB signaling by targeting RPTOR/raptor, a key component and an adaptor protein of MTORC1. Loss of TARDBP decreased the mRNA stabili...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1151596

    authors: Ying Z,Xia Q,Hao Z,Xu D,Wang M,Wang H,Wang G

    更新日期:2016-01-01 00:00:00