In Vivo Gene Expression Dynamics of Tumor-Targeted Bacteria.

Abstract:

:The engineering of bacteria to controllably deliver therapeutics is an attractive application for synthetic biology. While most synthetic gene networks have been explored within microbes, there is a need for further characterization of in vivo circuit behavior in the context of applications where the host microbes are actively being investigated for efficacy and safety, such as tumor drug delivery. One major hurdle is that culture-based selective pressures are absent in vivo, leading to strain-dependent instability of plasmid-based networks over time. Here, we experimentally characterize the dynamics of in vivo plasmid instability using attenuated strains of S. typhimurium and real-time monitoring of luminescent reporters. Computational modeling described the effects of growth rate and dosage on live-imaging signals generated by internal bacterial populations. This understanding will allow us to harness the transient nature of plasmid-based networks to create tunable temporal release profiles that reduce dosage requirements and increase the safety of bacterial therapies.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Danino T,Lo J,Prindle A,Hasty J,Bhatia SN

doi

10.1021/sb3000639

subject

Has Abstract

pub_date

2012-10-19 00:00:00

pages

465-470

issue

10

issn

2161-5063

journal_volume

1

pub_type

杂志文章
  • GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries.

    abstract::Directed evolution requires the creation of genetic diversity and subsequent screening or selection for improved variants. For DNA mutagenesis, conventional site-directed methods implicitly utilize the Boolean AND operator (creating all mutations simultaneously), producing a combinatorial explosion in the number of ge...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00063

    authors: Currin A,Kwok J,Sadler JC,Bell EL,Swainston N,Ababi M,Day P,Turner NJ,Kell DB

    更新日期:2019-06-21 00:00:00

  • Rational design of Escherichia coli for L-isoleucine production.

    abstract::Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing L-isoleucine, an important branched-chain amino acid. The thrABC (encoding L-threonine biosynthetic enzymes), ilvA (encoding feedback-resistant threonine dehydratase), ilvIH (encoding feedb...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300071a

    authors: Park JH,Oh JE,Lee KH,Kim JY,Lee SY

    更新日期:2012-11-16 00:00:00

  • A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    abstract::Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We id...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500363y

    authors: Cuperus JT,Lo RS,Shumaker L,Proctor J,Fields S

    更新日期:2015-07-17 00:00:00

  • Systematic Tools for Reprogramming Plant Gene Expression in a Simple Model, Marchantia polymorpha.

    abstract::We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00511

    authors: Sauret-Güeto S,Frangedakis E,Silvestri L,Rebmann M,Tomaselli M,Markel K,Delmans M,West A,Patron NJ,Haseloff J

    更新日期:2020-04-17 00:00:00

  • Gene-Mediated Chemical Communication in Synthetic Protocell Communities.

    abstract::A gene-directed chemical communication pathway between synthetic protocell signaling transmitters (lipid vesicles) and receivers (proteinosomes) was designed, built and tested using a bottom-up modular approach comprising small molecule transcriptional control, cell-free gene expression, porin-directed efflux, substra...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00306

    authors: Tang TD,Cecchi D,Fracasso G,Accardi D,Coutable-Pennarun A,Mansy SS,Perriman AW,Anderson JLR,Mann S

    更新日期:2018-02-16 00:00:00

  • A Genetically Encoded Protein Polymer for Uranyl Binding and Extraction Based on the SpyTag-SpyCatcher Chemistry.

    abstract::A defining goal of synthetic biology is to develop biomaterials with superior performance and versatility. Here we introduce a purely genetically encoded and self-assembling biopolymer based on the SpyTag-SpyCatcher chemistry. We show the application of this polymer for highly efficient uranyl binding and extraction f...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00223

    authors: Yang X,Wei J,Wang Y,Yang C,Zhao S,Li C,Dong Y,Bai K,Li Y,Teng H,Wang D,Lyu N,Li J,Chang X,Ning X,Ouyang Q,Zhang Y,Qian L

    更新日期:2018-10-19 00:00:00

  • Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    abstract::Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00211

    authors: Chomvong K,Lin E,Blaisse M,Gillespie AE,Cate JH

    更新日期:2017-02-17 00:00:00

  • Tn-Core: A Toolbox for Integrating Tn-seq Gene Essentiality Data and Constraint-Based Metabolic Modeling.

    abstract::The design of synthetic cells requires a detailed understanding of the relevance of genes and gene networks underlying complex cellular phenotypes. Transposon-sequencing (Tn-seq) and constraint-based metabolic modeling can be used to probe the core genetic and metabolic networks underlying a biological process. Integr...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00432

    authors: diCenzo GC,Mengoni A,Fondi M

    更新日期:2019-01-18 00:00:00

  • Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli.

    abstract::We developed a hybrid synthetic circuit that co-opts the genetic regulation of the native bacterial quorum sensing autoinducer-2 and imposes an extra external controller for maintaining tightly controlled gene expression. This dual-input genetic controller was mathematically modeled and, by design, can be operated in ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00179

    authors: Hauk P,Stephens K,Virgile C,VanArsdale E,Pottash AE,Schardt JS,Jay SM,Sintim HO,Bentley WE

    更新日期:2020-10-16 00:00:00

  • Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits.

    abstract::Strain engineering for synthetic biology and metabolic engineering applications often requires the expression of foreign proteins that can reduce cellular fitness. In order to quantify and visualize the evolutionary stability dynamics in engineered populations of Escherichia coli , we constructed randomized CMY (cyan-...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400055h

    authors: Sleight SC,Sauro HM

    更新日期:2013-09-20 00:00:00

  • An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene.

    abstract::We study translation repression in bacteria by engineering a regulatory circuit that functions as a binding assay for RNA binding proteins (RBP) in vivo. We do so by inducing expression of a fluorescent protein-RBP chimera, together with encoding its binding site at various positions within the ribosomal initiation re...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00378

    authors: Katz N,Cohen R,Solomon O,Kaufmann B,Atar O,Yakhini Z,Goldberg S,Amit R

    更新日期:2018-12-21 00:00:00

  • Biosynthetic Routes for Producing Various Fucosyl-Oligosaccharides.

    abstract::Fucosyl-oligosaccharides (FOSs) play physiologically important roles as prebiotics, neuronal growth factors, and inhibitors of enteropathogens. However, challenges in designed synthesis and mass production of FOSs hamper their industrial applications. Here, we report flexible biosynthetic routes to produce various FOS...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00436

    authors: Yun EJ,Liu JJ,Lee JW,Kwak S,Yu S,Kim KH,Jin YS

    更新日期:2019-02-15 00:00:00

  • Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    abstract::To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and Pg...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400194g

    authors: Kim YK,Kim YB,Uddin MR,Lee S,Kim SU,Park SU

    更新日期:2014-10-17 00:00:00

  • Bioprinting Living Biofilms through Optogenetic Manipulation.

    abstract::In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00003

    authors: Huang Y,Xia A,Yang G,Jin F

    更新日期:2018-05-18 00:00:00

  • An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    abstract::The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved fo...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00366

    authors: Natarajan A,Haitjema CH,Lee R,Boock JT,DeLisa MP

    更新日期:2017-05-19 00:00:00

  • Efficient and Precise Genome Editing in Shewanella with Recombineering and CRISPR/Cas9-Mediated Counter-Selection.

    abstract::Dissimilatory metal-reducing bacteria, particularly those from the genus Shewanella, are of importance for bioremediation of metal contaminated sites and sustainable energy production. However, studies on this species have suffered from a lack of effective genetic tools for precise and high throughput genome manipulat...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00188

    authors: Corts AD,Thomason LC,Gill RT,Gralnick JA

    更新日期:2019-08-16 00:00:00

  • Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.

    abstract::Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA media...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400051t

    authors: Li Y,Gu Q,Lin Z,Wang Z,Chen T,Zhao X

    更新日期:2013-11-15 00:00:00

  • Semirational Approach for Ultrahigh Poly(3-hydroxybutyrate) Accumulation in Escherichia coli by Combining One-Step Library Construction and High-Throughput Screening.

    abstract::As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00083

    authors: Li T,Ye J,Shen R,Zong Y,Zhao X,Lou C,Chen GQ

    更新日期:2016-11-18 00:00:00

  • Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs.

    abstract::In response to emergent antibiotic resistance, new strategies are needed to enhance the effectiveness of existing antibiotics. Here, we describe a phagemid-delivered, RNA-mediated system capable of directly knocking down antibiotic resistance phenotypes. Small regulatory RNAs (sRNAs) were designed to specifically inhi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500033d

    authors: Libis VK,Bernheim AG,Basier C,Jaramillo-Riveri S,Deyell M,Aghoghogbe I,Atanaskovic I,Bencherif AC,Benony M,Koutsoubelis N,Löchner AC,Marinkovic ZS,Zahra S,Zegman Y,Lindner AB,Wintermute EH

    更新日期:2014-12-19 00:00:00

  • MEGA (Multiple Essential Genes Assembling) deletion and replacement method for genome reduction in Escherichia coli.

    abstract::Top-down reduction of the bacterial genome to construct desired chassis cells is important for synthetic biology. However, the current progress in the field of genome reduction is greatly hindered by indispensable life-essential genes that are interspersed throughout the chromosomal loci. Here, we described a new meth...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500324p

    authors: Xue X,Wang T,Jiang P,Shao Y,Zhou M,Zhong L,Wu R,Zhou J,Xia H,Zhao G,Qin Z

    更新日期:2015-06-19 00:00:00

  • A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    abstract::Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome e...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00254

    authors: Bai H,Deng A,Liu S,Cui D,Qiu Q,Wang L,Yang Z,Wu J,Shang X,Zhang Y,Wen T

    更新日期:2018-01-19 00:00:00

  • Cloning, Stability, and Modification of Mycoplasma hominis Genome in Yeast.

    abstract::Mycoplasma hominis is a minimal human pathogen that is responsible for genital and neonatal infections. Despite many attempts, there is no efficient genetic tool to manipulate this bacterium, limiting most investigations of its pathogenicity and its uncommon energy metabolism that relies on arginine. The recent clonin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00379

    authors: Rideau F,Le Roy C,Descamps ECT,Renaudin H,Lartigue C,Bébéar C

    更新日期:2017-05-19 00:00:00

  • Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.

    abstract::Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific spe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00240

    authors: Bari SMN,Walker FC,Cater K,Aslan B,Hatoum-Aslan A

    更新日期:2017-12-15 00:00:00

  • A Scalable Epitope Tagging Approach for High Throughput ChIP-Seq Analysis.

    abstract::Eukaryotic transcriptional factors (TFs) typically recognize short genomic sequences alone or together with other proteins to modulate gene expression. Mapping of TF-DNA interactions in the genome is crucial for understanding the gene regulatory programs in cells. While chromatin immunoprecipitation followed by sequen...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00358

    authors: Xiong X,Zhang Y,Yan J,Jain S,Chee S,Ren B,Zhao H

    更新日期:2017-06-16 00:00:00

  • Curli-Mediated Self-Assembly of a Fibrous Protein Scaffold for Hydroxyapatite Mineralization.

    abstract::Nanostructures formed by self-assembled peptides have been increasingly exploited as functional materials for a wide variety of applications, from biotechnology to energy. However, it is sometimes challenging to assemble free short peptides into functional supramolecular structures, since not all peptides have the abi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00415

    authors: Abdali Z,Aminzare M,Zhu X,DeBenedictis E,Xie O,Keten S,Dorval Courchesne NM

    更新日期:2020-12-18 00:00:00

  • Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis.

    abstract::In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnol...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300102k

    authors: Carapezza G,Umeton R,Costanza J,Angione C,Stracquadanio G,Papini A,Lió P,Nicosia G

    更新日期:2013-05-17 00:00:00

  • Exploiting Single Domain Antibodies as Regulatory Parts to Modulate Monoterpenoid Production in E. coli.

    abstract::Synthetic biology and metabolic engineering offer potentially green and attractive routes to the production of high value compounds. The provision of high-quality parts and pathways is crucial in enabling the biosynthesis of chemicals using synthetic biology. While a number of regulatory parts that provide control at ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00375

    authors: Wilkes J,Scott-Tucker A,Wright M,Crabbe T,Scrutton NS

    更新日期:2020-10-16 00:00:00

  • Development of High-Performance Whole Cell Biosensors Aided by Statistical Modeling.

    abstract::Whole cell biosensors are genetic systems that link the presence of a chemical, or other stimulus, to a user-defined gene expression output for applications in sensing and control. However, the gene expression level of biosensor regulatory components required for optimal performance is nonintuitive, and classical iter...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00448

    authors: Berepiki A,Kent R,Machado LFM,Dixon N

    更新日期:2020-03-20 00:00:00

  • Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials.

    abstract::Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00448

    authors: Charrier M,Li D,Mann VR,Yun L,Jani S,Rad B,Cohen BE,Ashby PD,Ryan KR,Ajo-Franklin CM

    更新日期:2019-01-18 00:00:00

  • A Designed A. vinelandii-S. elongatus Coculture for Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals.

    abstract::Microbial mutualisms play critical roles in a diverse number of ecosystems and have the potential to improve the efficiency of bioproduction for desirable chemicals. We investigate the growth of a photosynthetic cyanobacterium, Synechococcus elongatus PCC 7942, and a diazotroph, Azotobacter vinelandii, in coculture. F...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00107

    authors: Smith MJ,Francis MB

    更新日期:2016-09-16 00:00:00