The differential distribution of the growth-associated protein-43 in first and higher order thalamic nuclei of the adult rat.

Abstract:

:Corticothalamic axons from layer 5 of primary and secondary auditory and visual areas have large terminals that make multiple synaptic contacts on proximal dendrites of relay cells in higher order thalamic nuclei and have been termed "driver" inputs. The corticothalamic cells express mRNA for the presynaptic growth-associated protein-43, in the adult rat [Feig SL (2004) Corticothalamic cells in layers 5 and 6 of primary and secondary sensory cortex express GAP-43 mRNA in the adult rat. J Comp Neurol 468:96-111]. In contrast, ascending driver afferents to first order nuclei (e.g. retinal, inferior collicular, and lemniscal) lose growth-associated protein-43 as mature synaptic terminals are established. Levels of immunoreactivity for growth-associated protein-43 are compared for first and higher order visual (lateral geniculate and lateral posterior), auditory (ventral and dorsal divisions of the medial geniculate), and somatosensory (ventral posterior and posterior) thalamic nuclei. At one week postnatal, staining for growth-associated protein-43 is uniform throughout first and higher order thalamic nuclei. By three weeks and thereafter, staining is denser in the higher order than first order thalamic nuclei. Electron microscopy shows growth-associated protein-43 in profiles with characteristics of afferents from layer 5 in LP and medial geniculate nucleus and no such label in retinal afferents in lateral geniculate nucleus. In these nuclei, approximately 25% of the profiles with characteristics of cortical afferents from layer 6 have label for growth-associated protein-43. The superficial layers of the superior colliculus also show growth-associated protein-43 positive profiles with characteristics of terminals from cortical layer 5. Some growth-associated protein-43 positive terminals were also positive for GABA in the thalamic nuclei studied and in the superior colliculus. The data suggest that sensory afferents to first order thalamocortical relays become stabilized once mature synaptic patterns are established, but the higher stages of information processing involving higher order thalamic relays, via cells in cortical layer 5, retain plasticity related to growth-associated protein-43 in the adult.

journal_name

Neuroscience

journal_title

Neuroscience

authors

Feig SL

doi

10.1016/j.neuroscience.2005.08.033

keywords:

subject

Has Abstract

pub_date

2005-01-01 00:00:00

pages

1147-57

issue

4

eissn

0306-4522

issn

1873-7544

pii

S0306-4522(05)00925-5

journal_volume

136

pub_type

杂志文章