Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy.

Abstract:

:The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme's active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.

journal_name

Front Mol Neurosci

authors

Huyghe D,Denninger AR,Voss CM,Frank P,Gao N,Brandon N,Waagepetersen HS,Ferguson AD,Pangalos M,Doig P,Moss SJ

doi

10.3389/fnmol.2019.00120

subject

Has Abstract

pub_date

2019-05-21 00:00:00

pages

120

issn

1662-5099

journal_volume

12

pub_type

杂志文章
  • Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences.

    abstract::Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer's disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00003

    authors: Copenhaver PF,Kögel D

    更新日期:2017-01-31 00:00:00

  • Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations.

    abstract::Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Her...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00205

    authors: Huang C,Lu F,Li P,Cao C,Liu Z

    更新日期:2017-06-28 00:00:00

  • Epinephrine May Contribute to the Persistence of Traumatic Memories in a Post-traumatic Stress Disorder Animal Model.

    abstract::The importance of catecholamines in post-traumatic stress disorder (PTSD) still needs to be explored. We aimed to evaluate epinephrine's (EPI) causal role and molecular mechanism for the persistence of PTSD traumatic memories. Wild-type (WT) and EPI-deficient mice (phenylethanolamine-N-methyltransferase-knockout mice,...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.588802

    authors: Martinho R,Oliveira A,Correia G,Marques M,Seixas R,Serrão P,Moreira-Rodrigues M

    更新日期:2020-10-26 00:00:00

  • Microglial Lectins in Health and Neurological Diseases.

    abstract::Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprot...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00158

    authors: Siew JJ,Chern Y

    更新日期:2018-05-14 00:00:00

  • Bcl11 Transcription Factors Regulate Cortical Development and Function.

    abstract::Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor fami...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00051

    authors: Simon R,Wiegreffe C,Britsch S

    更新日期:2020-04-08 00:00:00

  • Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury.

    abstract::Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00109

    authors: Siebold L,Krueger AC,Abdala JA,Figueroa JD,Bartnik-Olson B,Holshouser B,Wilson CG,Ashwal S

    更新日期:2020-06-26 00:00:00

  • Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia.

    abstract::Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominan...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.612439

    authors: Lian L,Zhang Y,Liu L,Yang L,Cai Y,Zhang J,Xu S

    更新日期:2021-01-07 00:00:00

  • Identification of lncRNAs Associated With Neuroblastoma in Cross-Sectional Databases: Potential Biomarkers.

    abstract::Long non-coding RNAs (lncRNAs) have emerged as an important regulatory control in biological systems. Though the field of lncRNA has been progressing rapidly, a complete understanding of the role of lncRNAs in neuroblastoma pathogenesis is still lacking. To identify the abrogated lncRNAs in primary neuroblastoma and i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00293

    authors: Prajapati B,Fatma M,Fatima M,Khan MT,Sinha S,Seth PK

    更新日期:2019-12-12 00:00:00

  • Cryptochrome Interacts With Actin and Enhances Eye-Mediated Light Sensitivity of the Circadian Clock in Drosophila melanogaster.

    abstract::Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00238

    authors: Schlichting M,Rieger D,Cusumano P,Grebler R,Costa R,Mazzotta GM,Helfrich-Förster C

    更新日期:2018-07-18 00:00:00

  • The Binding Properties and Physiological Functions of Recoverin.

    abstract::Recoverin (Rcv) is a low molecular-weight, neuronal calcium sensor (NCS) primarily located in photoreceptor outer segments of the vertebrate retina. Calcium ions (Ca2+)-bound Rcv has been proposed to inhibit G-protein-coupled receptor kinase (GRKs) in darkness. During the light response, the Ca2+-free Rcv releases GRK...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00473

    authors: Zang J,Neuhauss SCF

    更新日期:2018-12-20 00:00:00

  • Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane.

    abstract::Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2014.00093

    authors: Jinno Y,Shoda K,Rial-Verde E,Yuste R,Miyawaki A,Tsutsui H

    更新日期:2014-11-27 00:00:00

  • Smaller Body Size, Early Postnatal Lethality, and Cortical Extracellular Matrix-Related Gene Expression Changes of Cyfip2-Null Embryonic Mice.

    abstract::Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is a key component of the WAVE regulatory complex (WRC) which regulates actin polymerization and branching in diverse cellular compartments. Recent whole exome sequencing studies identified de novo hotspot variants in CYFIP2 from patients with early-onset epileptic encep...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00482

    authors: Zhang Y,Kang H,Lee Y,Kim Y,Lee B,Kim JY,Jin C,Kim S,Kim H,Han K

    更新日期:2019-01-04 00:00:00

  • The Inhibitory Effect of α/β-Hydrolase Domain-Containing 6 (ABHD6) on the Surface Targeting of GluA2- and GluA3-Containing AMPA Receptors.

    abstract::The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are major excitatory receptors that mediate fast neurotransmission in the mammalian brain. The surface expression of functional AMPARs is crucial for synaptic transmission and plasticity. AMPAR auxiliary subunits control ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00055

    authors: Wei M,Jia M,Zhang J,Yu L,Zhao Y,Chen Y,Ma Y,Zhang W,Shi YS,Zhang C

    更新日期:2017-03-02 00:00:00

  • Screening the Molecular Framework Underlying Local Dendritic mRNA Translation.

    abstract::In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory s...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00045

    authors: Namjoshi SV,Raab-Graham KF

    更新日期:2017-02-24 00:00:00

  • Subsynaptic Domains in Super-Resolution Microscopy: The Treachery of Images.

    abstract::The application of super-resolution optical microscopy to investigating synaptic structures has revealed a highly heterogeneous and variable intra-synaptic organization. Dense subsynaptic protein assemblies named subsynaptic domains or SSDs have been proposed as structural units that regulate the efficacy of neuronal ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00161

    authors: Yang X,Specht CG

    更新日期:2019-07-02 00:00:00

  • Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding.

    abstract::Neuronal calcium sensor-1 (NCS-1) protein is abundantly expressed in the central nervous system and retinal neurons, where it regulates many vital processes such as synaptic transmission. It coordinates three calcium ions by EF-hands 2-4, thereby transducing Ca2+ signals to a wide range of protein targets, including G...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00459

    authors: Tsvetkov PO,Roman AY,Baksheeva VE,Nazipova AA,Shevelyova MP,Vladimirov VI,Buyanova MF,Zinchenko DV,Zamyatnin AA Jr,Devred F,Golovin AV,Permyakov SE,Zernii EY

    更新日期:2018-12-14 00:00:00

  • Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development.

    abstract::Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane gl...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00130

    authors: Ramaker JM,Cargill RS,Swanson TL,Quirindongo H,Cassar M,Kretzschmar D,Copenhaver PF

    更新日期:2016-11-25 00:00:00

  • PINK1 Protects Against Gentamicin-Induced Sensory Hair Cell Damage: Possible Relation to Induction of Autophagy and Inhibition of p53 Signal Pathway.

    abstract::Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is a gatekeeper of mitochondrial quality control. The present study was aimed to examine whether PINK1 possesses a protective function against gentamicin (GM)-induced sensory hair cell (HC) damage in vitro. The formation of parkin particles (a mar...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00403

    authors: Yang Q,Zhou Y,Yin H,Li H,Zhou M,Sun G,Cao Z,Man R,Wang H,Li J

    更新日期:2018-11-12 00:00:00

  • Ion Channel Contributions to Morphological Development: Insights From the Role of Kir2.1 in Bone Development.

    abstract::The role of ion channels in neurons and muscles has been well characterized. However, recent work has demonstrated both the presence and necessity of ion channels in diverse cell types for morphological development. For example, mutations that disrupt ion channels give rise to abnormal structural development in specie...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00099

    authors: Ozekin YH,Isner T,Bates EA

    更新日期:2020-06-09 00:00:00

  • Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics.

    abstract::GABAergic interneuron diversity is a key feature in the brain that helps to create different brain activity patterns and behavioral states. Cell type classification schemes-based on anatomical, physiological and molecular features-have provided us with a detailed understanding of the distinct types that constitute thi...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00115

    authors: Que L,Winterer J,Földy C

    更新日期:2019-05-07 00:00:00

  • Fragile-X Syndrome Is Associated With NMDA Receptor Hypofunction and Reduced Dendritic Complexity in Mature Dentate Granule Cells.

    abstract::Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by the overexpansion of cytosine-guanine-guanine (CGG) trinucleotide in Fmr1 gene, resulting in complete loss of the fragile X mental retardation protein (FMRP). Previous studies using Fmr1 knockout (Fmr1 KO) mice have ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00495

    authors: Yau SY,Bettio L,Chiu J,Chiu C,Christie BR

    更新日期:2019-01-17 00:00:00

  • Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down.

    abstract::Human achaete-scute homolog-1 (hASH1), encoded by the human ASCL1 gene, belongs to the family of basic helix-loop-helix transcription factors. hASH1 and its mammalian homolog Mash1 are expressed in the central and peripheral nervous system during development, and promote early neuronal differentiation. Furthermore, hA...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00001

    authors: Benko E,Winkelmann A,Meier JC,Persson PB,Scholz H,Fähling M

    更新日期:2011-02-07 00:00:00

  • Emerging roles of glycogen synthase kinase 3 in the treatment of brain tumors.

    abstract::The constitutively active protein glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, acts paradoxically as a tumor suppressor in some cancers while potentiates growth in others. Deciphering what governs its actions is vital for understanding many pathological conditions, including brain cancer. What are see...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00047

    authors: Mills CN,Nowsheen S,Bonner JA,Yang ES

    更新日期:2011-11-25 00:00:00

  • Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells.

    abstract::Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.594319

    authors: Greene AN,Parks LG,Solomon MB,Privette Vinnedge LM

    更新日期:2020-11-16 00:00:00

  • Alterations in Morphology and Adult Neurogenesis in the Dentate Gyrus of Patched1 Heterozygous Mice.

    abstract::Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/- ). We demonstrated for the first time, that Ptch1+...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00168

    authors: Antonelli F,Casciati A,Tanori M,Tanno B,Linares-Vidal MV,Serra N,Bellés M,Pannicelli A,Saran A,Pazzaglia S

    更新日期:2018-05-23 00:00:00

  • Cysteines as Redox Molecular Switches and Targets of Disease.

    abstract::Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00167

    authors: Fra A,Yoboue ED,Sitia R

    更新日期:2017-06-06 00:00:00

  • Corrigendum: YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2019.00177.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fnmol.2019.00256

    authors: Belin S,Herron J,VerPlank JJS,Park Y,Feltri LM,Poitelon Y

    更新日期:2019-10-18 00:00:00

  • Corrigendum: Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in AII Amacrine Cells.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2019.00099.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,已发布勘误

    doi:10.3389/fnmol.2019.00149

    authors: Yadav SC,Tetenborg S,Dedek K

    更新日期:2019-06-12 00:00:00

  • Forward Genetic Screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As Suppressors of C9ORF72 Related Phenotypes.

    abstract::An abnormally expanded GGGGCC repeat in C9ORF72 is the most frequent causal mutation associated with amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration (FTLD). Both gain-of-function (gf) and loss-of-function (lf) mechanisms have been involved in C9ORF72 related ALS/FTLD. The gf mechanism of C9ORF72 ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00113

    authors: Wang X,Hao L,Saur T,Joyal K,Zhao Y,Zhai D,Li J,Pribadi M,Coppola G,Cohen BM,Buttner EA

    更新日期:2016-11-08 00:00:00

  • Neuronal Culture Microenvironments Determine Preferences in Bioenergetic Pathway Use.

    abstract::In the brain, metabolic supply and demand is directly coupled to neuronal activation. Methods for culturing primary rodent brain cells have come of age and are geared toward sophisticated modeling of human brain physiology and pathology. However, the impact of the culture microenvironment on neuronal function is rarel...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00305

    authors: Sünwoldt J,Bosche B,Meisel A,Mergenthaler P

    更新日期:2017-09-29 00:00:00