Human cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties.

Abstract:

:Human cytomegalovirus (HCMV) glycoprotein US2 increases the proteasome-mediated degradation of major histocompatibility complex (MHC) class I heavy chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. US2-initiated degradation of MHC proteins apparently involves the recruitment of cellular proteins that participate in a process known as endoplasmic reticulum (ER)-associated degradation. ER-associated degradation is a normal process by which misfolded proteins are recognized and translocated into the cytoplasm for degradation by proteasomes. It has been demonstrated that truncated forms of US2, especially those lacking the cytoplasmic domain (CT), can bind MHC proteins but do not cause their degradation. To further assess how the US2 CT domain interacts with the cellular components of the ER-associated degradation pathway, we constructed chimeric proteins in which the US2 CT domain or the CT and transmembrane (TM) domains replaced those of the HCMV glycoprotein US3. US3 also binds both class I and II proteins but does not cause their degradation. Remarkably, chimeras containing the US2 CT domain caused the degradation of both MHC class I and II proteins although this degradation was less than that by wild-type US2. Therefore, the US2 CT and TM domains can confer on US3 the capacity to degrade MHC proteins. We also analyzed complexes containing MHC proteins and US2, US3, US11, or US3/US2 chimeras for the presence of cdc48/p97 ATPase, a protein that binds polyubiquitinated proteins and likely functions in the extraction of substrates from the ER membrane before the substrates meet proteasomes. p97 ATPase was present in immunoprecipitates containing US2, US11, and two chimeras that included the US2 CT domain, but not in US3 complexes. Therefore, it appears that the CT domain of US2 participates in recruiting p97 ATPase into ER-associated degradation complexes.

journal_name

J Virol

journal_title

Journal of virology

authors

Chevalier MS,Johnson DC

doi

10.1128/jvi.77.8.4731-4738.2003

subject

Has Abstract

pub_date

2003-04-01 00:00:00

pages

4731-8

issue

8

eissn

0022-538X

issn

1098-5514

journal_volume

77

pub_type

杂志文章