Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli.

Abstract:

:The bacterial phosphoenolpyruvate:sugar phosphotransferase system involves a series of reactions in which phosphoprotein intermediates are formed. Histidine-containing protein (HPr) is phosphorylated on the N delta 1 position of the imidazole ring of His15 by enzyme I and acts as a phosphoryl donor to the sugar-specific enzymes IIA. The structure of phosphorylated HPr from Bacillus subtilis, primarily, and from Escherichia coli has been studied by nuclear magnetic resonance (NMR) spectroscopy. Phosphorylation of His15 results in large downfield shifts in amide proton and nitrogen resonances for residues 16 and 17 but results in only modest or no shifts in other backbone resonances. The exchange rates of these two amide groups are decreased more than 10-fold upon phosphorylation. Analysis of the coupling constants 3JNH alpha revealed no significant changes throughout the protein, indicating that backbone phi dihedral angles do not change detectably. 3J alpha beta and 3JN beta patterns determined from P.E.COSY and HNHB spectra, respectively, revealed a change in one side chain, that of conserved Arg17. Analysis of NOESY spectra revealed a limited number of changes in NOEs involving protons in Ser12, His15, Arg71, and Pro18 in B. subtilis HPr. The NMR results indicate that the Arg17 side chain becomes limited in its conformational range in the phosphorylated protein, taking on a conformation that points its guanidinium group toward the phosphoryl group on His15. In addition, the tautomeric and ionization states of His15 have been determined using 15N and 31P NMR. At neutral pH, the imidazole is predominantly in the protonated form and the phosphoryl group is in the dianionic form in P-His15. Altogether, the results indicate that phosphorylation of His15 yields only a local effect on the protein's structure. The data are consistent with a small change in the disposition of the histidine side chain, allowing phosphoryl group oxygens to serve as hydrogen bond acceptors for the amide protons of residues Ala16 and Arg17, which constitute the first two residues of an alpha-helix. Thus, similar to many proteins that bind phosphoryl moieties noncovalently, the phosphoryl group in P-His15-HPr is situated to allow for a favorable electrostatic interaction at the N-terminal end of an alpha-helix.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Rajagopal P,Waygood EB,Klevit RE

doi

10.1021/bi00255a008

subject

Has Abstract

pub_date

1994-12-27 00:00:00

pages

15271-82

issue

51

eissn

0006-2960

issn

1520-4995

journal_volume

33

pub_type

杂志文章