Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke.

Abstract:

:The brain is considered to have a limited capacity to repair damaged tissue and no regenerative capacity following injury. Tissue lost after a stroke is therefore not spontaneously replaced. Extracellular matrix (ECM)-based hydrogels implanted into the stroke cavity can attract endogenous cells. These hydrogels can be formulated at different protein concentrations that govern their rheological and inductive properties. We evaluated histologically 0, 3, 4 and 8 mg/mL of porcine-derived urinary bladder matrix (UBM)-ECM hydrogel concentrations implanted in a 14-day old stroke cavity. Less concentrated hydrogels (3 and 4 mg/mL) were efficiently degraded with a 95% decrease in volume by 90 days, whereas only 32% of the more concentrated and stiffer hydrogel (8 mg/mL) was resorbed. Macrophage infiltration and density within the bioscaffold progressively increased in the less concentrated hydrogels and decreased in the 8 mg/mL hydrogels. The less concentrated hydrogels showed a robust invasion of endothelial cells with neovascularization. No neovascularization occurred with the stiffer hydrogel. Invasion of neural cells increased with time in all hydrogel concentrations. Differentiation of neural progenitors into mature neurons with axonal projections was evident, as well as a robust invasion of oligodendrocytes. However, relatively few astrocytes were present in the ECM hydrogel, although some were present in the newly forming tissue between degrading scaffold patches. Implantation of an ECM hydrogel partially induced neural tissue restoration, but a more complete understanding is required to evaluate its potential therapeutic application. STATEMENT OF SIGNIFICANCE: Extracellular matrix hydrogel promotes tissue regeneration in many peripheral soft tissues. However, the brain has generally been considered to lack the potential for tissue regeneration. We here demonstrate that tissue regeneration in the brain can be achieved using implantation of ECM hydrogel into a tissue cavity. A structure-function relationship is key to promote tissue regeneration in the brain. Specifically, weaker hydrogels that were retained in the cavity underwent an efficient biodegradation within 14 days post-implantation to promote a tissue restoration within the lesion cavity. In contrast, stiffer ECM hydrogel only underwent minor biodegradation and did not lead to a tissue restoration. Inductive hydrogels weaker than brain tissue provide the appropriate condition to promote an endogenous regenerative response that restores tissue in a cavity. This approach offers new avenues for the future treatment of chronic tissue damage caused by stroke and other acute brain injuries.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Ghuman H,Mauney C,Donnelly J,Massensini AR,Badylak SF,Modo M

doi

10.1016/j.actbio.2018.09.020

subject

Has Abstract

pub_date

2018-10-15 00:00:00

pages

66-84

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(18)30537-3

journal_volume

80

pub_type

杂志文章
  • A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1.

    abstract::In the present report, a degradable gene delivery system (PAMS/DNA/10NLS) containing nucleus location signal peptide (NLS) was prepared. The agarose gel electrophoresis, particle size and zeta potential of PAMS/DNA/10NLS were similar to those of PAMS/DNA, which proved that NLS did not affect the interaction between PA...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.11.004

    authors: Chen K,Guo L,Zhang J,Chen Q,Wang K,Li C,Li W,Qiao M,Zhao X,Hu H,Chen D

    更新日期:2017-01-15 00:00:00

  • Failure mechanisms in fibrous scaffolds.

    abstract::Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fib...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.02.046

    authors: Koh CT,Strange DG,Tonsomboon K,Oyen ML

    更新日期:2013-07-01 00:00:00

  • Peptide-mediated shape- and size-tunable synthesis of gold nanostructures.

    abstract::While several biological processes have been shown to be useful for the production of well-designed, inorganic nanostructures, the mechanism(s) controlling the size and shape of nano and micron size particles remains elusive. Here we report on the controlled size- and shape-specific production of gold nanostructures u...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.01.019

    authors: Kim J,Rheem Y,Yoo B,Chong Y,Bozhilov KN,Kim D,Sadowsky MJ,Hur HG,Myung NV

    更新日期:2010-07-01 00:00:00

  • First-principles calculations of divalent substitution of Ca(2+) in tricalcium phosphates.

    abstract::First-principles calculations were carried out to reveal local atomic arrangements and thermodynamic stability of substitutional divalent cations of Mg(2+), Zn(2+), Sr(2+) and Ba(2+) in tricalcium phosphates (TCPs). There are two modifications of α-TCP and β-TCP, and a number of inequivalent Ca sites are present in th...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.05.014

    authors: Matsunaga K,Kubota T,Toyoura K,Nakamura A

    更新日期:2015-09-01 00:00:00

  • Processing and biocompatibility evaluation of laser processed porous titanium.

    abstract::The Laser Engineered Net Shaping (LENS) method was used to fabricate porous Ti implants. Porous Ti structures with controlled porosity in the range of 17-58 vol.% and pore size up to 800 microm were produced by controlling LENS parameters, which showed a broad range of mechanical strength of 24-463 MPa and a low Young...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.05.009

    authors: Xue W,Krishna BV,Bandyopadhyay A,Bose S

    更新日期:2007-11-01 00:00:00

  • Smart nanocarriers for pH-triggered targeting and release of hydrophobic drugs.

    abstract::The use of hybrid pH-sensitive micelles based mainly on the (PEO)(129)(P2VP)(43)(PCL)(17) ABC miktoarm star copolymer as potential triggered drug delivery systems was investigated. Co-micellization of this star copolymer with a second copolymer labeled by a targeting ligand, i.e. biotin, on the pH sensitive block (pol...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.08.049

    authors: Cajot S,Van Butsele K,Paillard A,Passirani C,Garcion E,Benoit JP,Varshney SK,Jérôme C

    更新日期:2012-12-01 00:00:00

  • Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics.

    abstract::A predictive framework for the evolution of stem cell biology in 3-D is currently lacking. In this study we propose deep image informatics of the nuclear biology of stem cells to elucidate how 3-D biomaterials steer stem cell lineage phenotypes. The approach is based on high content imaging informatics to capture minu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.08.052

    authors: Dhaliwal A,Brenner M,Wolujewicz P,Zhang Z,Mao Y,Batish M,Kohn J,Moghe PV

    更新日期:2016-11-01 00:00:00

  • An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.

    abstract::Human pluripotent stem cell derived neural progenitor cells (hNPCs) have the unique properties of long-term in vitro expansion as well as differentiation into the various neurons and supporting cell types of the central nervous system (CNS). Because of these characteristics, hNPCs have tremendous potential in the mode...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.05.008

    authors: Srinivasan G,Morgan D,Varun D,Brookhouser N,Brafman DA

    更新日期:2018-07-01 00:00:00

  • Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs.

    abstract::Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer and inform development of the envisaged...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.09.014

    authors: Garcia JP,Longoni A,Gawlitta D,J W P Rosenberg A,Grinstaff MW,Töyräs J,Weinans H,Creemers LB,Pouran B

    更新日期:2019-12-01 00:00:00

  • Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model.

    abstract::Titanium oxide (TiO₂) scaffolds have previously been reported to exhibit very low mechanical strength. However, we have been able to produce a scaffold that features a high interconnectivity, a porosity of 91% and a compressive strength above 1.2 MPa. This study analyzed the in vivo performance of the porous TiO₂ scaf...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.09.009

    authors: Haugen HJ,Monjo M,Rubert M,Verket A,Lyngstadaas SP,Ellingsen JE,Rønold HJ,Wohlfahrt JC

    更新日期:2013-02-01 00:00:00

  • Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: A complex cellulosic composite biomaterial.

    abstract::Biological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton, known as a tunic, which has been studied quite extensively in several species. However, currentl...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.04.038

    authors: Song G,Delroisse J,Schoenaers D,Kim H,Nguyen TC,Horbelt N,Leclère P,Hwang DS,Harrington MJ,Flammang P

    更新日期:2020-07-15 00:00:00

  • In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.

    abstract::It is known that porous scaffolds play an important role in bone/periodontal tissue engineering. A new nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic has recently been prepared which shows excellent apatite mineralization ability and osteo-/cementostimulation properties in vitro. However, up to now porous NAGEL scaffold...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.09.011

    authors: Xu M,Zhai D,Chang J,Wu C

    更新日期:2014-01-01 00:00:00

  • Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive.

    abstract::Besides functional and cross-linking monomers, dental adhesives contain a photo-initiator system for polymerization, thereby providing physico-mechanical strength to the adhesive-tooth interface. Few studies have investigated the effect of the functional monomer and polymerization-initiation system on the polymerizati...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.01.013

    authors: Oguri M,Yoshida Y,Yoshihara K,Miyauchi T,Nakamura Y,Shimoda S,Hanabusa M,Momoi Y,Van Meerbeek B

    更新日期:2012-05-01 00:00:00

  • Responsive hydrogels produced via organic sol-gel chemistry for cell culture applications.

    abstract::In this study, we report the synthesis of novel environmentally responsive polyurea hydrogel networks prepared via organic sol-gel chemistry and demonstrate that the networks can stabilize pH while releasing glucose both in simple aqueous media and in mammalian cell culture settings. Hydrogel formulations have been de...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.04.040

    authors: Patil S,Chaudhury P,Clarizia L,McDonald M,Reynaud E,Gaines P,Schmidt DF

    更新日期:2012-08-01 00:00:00

  • Self-assembling peptide amphiphile nanofiber matrices for cell entrapment.

    abstract::We have developed a class of peptide amphiphile (PA) molecules that self-assemble into three-dimensional nanofiber networks under physiological conditions in the presence of polyvalent metal ions. The assembly can be triggered by adding PA solutions to cell culture media or other synthetic physiological fluids contain...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2005.04.002

    authors: Beniash E,Hartgerink JD,Storrie H,Stendahl JC,Stupp SI

    更新日期:2005-07-01 00:00:00

  • Species-specific effects of aortic valve decellularization.

    abstract::Decellularized heart valves have great potential as a stand-alone valve replacement or as a scaffold for tissue engineering heart valves. Before decellularized valves can be widely used clinically, regulatory standards require pre-clinical testing in an animal model, often sheep. Numerous decellularization protocols h...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.01.008

    authors: VeDepo MC,Buse EE,Quinn RW,Williams TD,Detamore MS,Hopkins RA,Converse GL

    更新日期:2017-03-01 00:00:00

  • Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography.

    abstract::The preparation of scaffolds to facilitate the replacement of damaged tissues and organs by means of tissue engineering has been much investigated. The key properties of the biomaterials used to prepare such scaffolds include biodegradability, biocompatibility and a well-defined three-dimensional 3-Dpore network struc...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.12.004

    authors: Ronca A,Ambrosio L,Grijpma DW

    更新日期:2013-04-01 00:00:00

  • Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys.

    abstract::The effects of the microstructures and phases of Zr-rich Mo alloys on their magnetic susceptibilities and mechanical properties were investigated in order to develop a Zr alloy with low magnetic susceptibility for use in magnetic resonance imaging (MRI). The magnetic susceptibility was measured with a magnetic suscept...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.07.005

    authors: Suyalatu,Kondo R,Tsutsumi Y,Doi H,Nomura N,Hanawa T

    更新日期:2011-12-01 00:00:00

  • Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.

    abstract::There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem c...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,收录出版

    doi:10.1016/j.actbio.2014.12.010

    authors: Zhao S,Wang H,Zhang Y,Huang W,Rahaman MN,Liu Z,Wang D,Zhang C

    更新日期:2015-03-01 00:00:00

  • Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds.

    abstract::Wound infections are a significant clinical problem affecting millions of people worldwide. Topically applied antibacterial formulations with longer residence time and controlled antimicrobial release would offer significant benefits for improved prevention and treatment of infected wounds. In this study, we developed...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.12.014

    authors: Thapa RK,Kiick KL,Sullivan MO

    更新日期:2020-02-01 00:00:00

  • Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.

    abstract::Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.08.015

    authors: Yang Y,Chu L,Yang S,Zhang H,Qin L,Guillaume O,Eglin D,Richards RG,Tang T

    更新日期:2018-10-01 00:00:00

  • Self-assembled amphiphile-based nanoparticles for the inhibition of hepatocellular carcinoma metastasis via ICAM-1 mediated cell adhesion.

    abstract::Nanosized drug delivery systems have emerged to improve the therapeutic performance of anticancer drugs. Here, an amphiphile-based nanoparticle consisting of amphiphilic prodrug N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine was developed (UP12 NPs) with uniform sizes (~100 nm), which possessed the advantage...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.04.050

    authors: Zhao RR,Fang YF,Chen ZX,Le JQ,Jiang LG,Shao JW

    更新日期:2020-07-15 00:00:00

  • Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants.

    abstract::Three-dimensional (3D) porous zinc (Zn) with a moderate degradation rate is a promising candidate for biodegradable bone scaffolds. However, fabrication of such scaffolds with adequate mechanical properties remains a challenge. Moreover, the composition, crystallography and microstructure of the in vivo degradation pr...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.11.032

    authors: He J,Fang J,Wei P,Li Y,Guo H,Mei Q,Ren F

    更新日期:2021-02-01 00:00:00

  • A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets.

    abstract::The tricuspid valve ensures unidirectional blood flow from the right atrium to the right ventricle. The three tricuspid leaflets operate within a dynamic stress environment of shear, bending, tensile, and compressive forces, which is cyclically repeated nearly three billion times in a lifetime. Ostensibly, the microst...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.11.039

    authors: Meador WD,Mathur M,Sugerman GP,Jazwiec T,Malinowski M,Bersi MR,Timek TA,Rausch MK

    更新日期:2020-01-15 00:00:00

  • Selection of extraction medium influences cytotoxicity of zinc and its alloys.

    abstract::Zinc (Zn) alloys have been considered as promising absorbable metals, mainly due to their moderate degradation rates ranging between magnesium alloys and iron alloys. The degradation behavior depends on the specific physiological environment. Released metallic ions and corrosion products directly influence biocompatib...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.03.013

    authors: Li P,Schille C,Schweizer E,Kimmerle-Müller E,Rupp F,Heiss A,Legner C,Klotz UE,Geis-Gerstorfer J,Scheideler L

    更新日期:2019-10-15 00:00:00

  • Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications.

    abstract::This work focuses on the synthesis and characterization of a novel bioresorbable glass ceramic phosphate-based material (GC-ICEL). More specifically, its solubility in different aqueous media (water, Tris-HCl and acellular simulated body fluid) and the response of human stromal cells cultured on it were investigated. ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.07.017

    authors: Leonardi E,Ciapetti G,Baldini N,Novajra G,Verné E,Baino F,Vitale-Brovarone C

    更新日期:2010-02-01 00:00:00

  • Bone ingrowth in macroporous Bonelike for orthopaedic applications.

    abstract::The aim of this study was to evaluate the biological behaviour of porous scaffold structures of Bonelike which is suitable for either direct clinical use or tissue engineering applications. Porous cylindrical specimens 8x10mm were implanted in the lateral aspect of the tibia of 13 patients (mean age 54 years), during ...

    journal_title:Acta biomaterialia

    pub_type: 临床试验,杂志文章

    doi:10.1016/j.actbio.2007.06.009

    authors: Gutierres M,Lopes MA,Sooraj Hussain N,Lemos AF,Ferreira JM,Afonso A,Cabral AT,Almeida L,Santos JD

    更新日期:2008-03-01 00:00:00

  • Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity.

    abstract::With the aim of minimizing thrombus formation in blood-contacting devices, tissue plasminogen activator (t-PA)-containing polyurethane (PU) materials have been developed. Cationic PU surfaces were prepared by grafting poly(dimethylaminoethyl methacrylate) and quaternizing the tertiary amino groups with iodomethane or ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.01.026

    authors: Wu Z,Chen H,Li D,Brash JL

    更新日期:2011-05-01 00:00:00

  • Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres.

    abstract::Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with unifo...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.04.019

    authors: Shi M,Zhou Y,Shao J,Chen Z,Song B,Chang J,Wu C,Xiao Y

    更新日期:2015-07-01 00:00:00

  • Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels.

    abstract::Development of an ex vivo culture system to expand satellite cells, the resident muscle stem cell population, will be necessary for the development of their use as therapeutics. The loss of the niche environment is often cited as the reason that culture results in both the loss of myogenic potential and low re-engraft...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.08.019

    authors: Palade J,Pal A,Rawls A,Stabenfeldt S,Wilson-Rawls J

    更新日期:2019-10-01 00:00:00