Hypoxia-inducible Factor 2α Exerts Neuroprotective Effects by Promoting Angiogenesis via the VEGF/Notch Pathway after Intracerebral Hemorrhage Injury in Rats.

Abstract:

:Angiogenesis after intracerebral hemorrhage (ICH) injury can effectively alleviate brain damage and improve neurological function. Hypoxia-inducible factor 2α (HIF-2α) is an important angiogenic regulator and exhibits protective effects in several neurological diseases; however, its role in ICH has not yet been reported. Hence, in the present study, we explored whether HIF-2α reduces ICH injury by promoting angiogenesis. In addition, we explored the role of the vascular endothelial growth factor (VEGF)/Notch pathway in HIF-2α-mediated angiogenesis. We injected 50 μL of autologous blood taken from the femoral artery into the right striatum of healthy male adult Sprague-Dawley rats to create an autologous-blood-induced rat model of ICH. Lentiviral vectors were injected to both overexpress and knock down HIF-2α expression. VEGF receptor 2 (VEGFR2) and Notch-specific inhibitors were injected intraperitoneally to block VEGFR2- and Notch-mediated signaling after lentiviral injections. Our data showed that HIF-2α overexpression reduced neurological-damage scores and brain-water content, suggesting it had a protective effect on ICH injury. In addition, overexpression of HIF-2α promoted angiogenesis, increased focal cerebral blood flow (CBF), and reduced neuronal damage, whereas HIF-2α knockdown resulted in the opposite effects. Furthermore, we found that HIF-2α-mediated angiogenesis was blocked by a Notch-specific inhibitor. Likewise, the HIF-2α-mediated increase in phospho-VEGFR-2, cleaved-Notch1 and Notch1 expression was reversed via a VEGFR2-specific inhibitor. Taken together, our results indicate that HIF-2α promotes angiogenesis via the VEGF/Notch pathway to attenuate ICH injury. Moreover, our findings may contribute to the development of a novel strategy for alleviating ICH injury via HIF-2α-mediated upregulation of angiogenesis.

journal_name

Neuroscience

journal_title

Neuroscience

authors

Chen H,Xiao H,Gan H,Zhang L,Wang L,Li S,Wang D,Li T,Zhai X,Zhao J

doi

10.1016/j.neuroscience.2020.07.010

subject

Has Abstract

pub_date

2020-11-10 00:00:00

pages

206-218

eissn

0306-4522

issn

1873-7544

pii

S0306-4522(20)30444-9

journal_volume

448

pub_type

杂志文章