Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase.

Abstract:

BACKGROUND:Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. RESULTS:Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and nitrogen assimilation were induced 1 hour after pulsing. CONCLUSIONS:The redox and energy metabolism were found to be more severely affected after pulsing of furan aldehydes during the xylose consumption phase than during glucose consumption. Conceivably, this discrepancy resulted from the low xylose utilization rate, hence suggesting that xylose metabolism is a feasible target for metabolic engineering of more robust xylose-utilizing yeast strains.

journal_name

Biotechnol Biofuels

authors

Ask M,Bettiga M,Duraiswamy VR,Olsson L

doi

10.1186/1754-6834-6-181

subject

Has Abstract

pub_date

2013-12-16 00:00:00

pages

181

issue

1

issn

1754-6834

pii

1754-6834-6-181

journal_volume

6

pub_type

杂志文章
  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.

    abstract:BACKGROUND:Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0923-9

    authors: Herlet J,Kornberger P,Roessler B,Glanz J,Schwarz WH,Liebl W,Zverlov VV

    更新日期:2017-10-11 00:00:00

  • Saccharomyces cerevisiae strain comparison in glucose-xylose fermentations on defined substrates and in high-gravity SSCF: convergence in strain performance despite differences in genetic and evolutionary engineering history.

    abstract:BACKGROUND:The most advanced strains of xylose-fermenting Saccharomyces cerevisiae still utilize xylose far less efficiently than glucose, despite the extensive metabolic and evolutionary engineering applied in their development. Systematic comparison of strains across literature is difficult due to widely varying cond...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0887-9

    authors: Novy V,Wang R,Westman JO,Franzén CJ,Nidetzky B

    更新日期:2017-09-04 00:00:00

  • Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy.

    abstract:BACKGROUND:A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman sp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-28

    authors: Ewanick SM,Thompson WJ,Marquardt BJ,Bura R

    更新日期:2013-02-20 00:00:00

  • Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin.

    abstract:BACKGROUND:Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackle...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0701-8

    authors: Scoma A,Coma M,Kerckhof FM,Boon N,Rabaey K

    更新日期:2017-01-31 00:00:00

  • Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling.

    abstract:BACKGROUND:While microbial electrolysis cells (MECs) can simultaneously produce bioelectrochemical hydrogen and treat wastewater, they consume considerable energy to overcome the unfavorable thermodynamics, which is not sustainable and economically feasible in practical applications. This study presents a proof-of-conc...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0305-0

    authors: Yuan H,Lu Y,Abu-Reesh IM,He Z

    更新日期:2015-08-14 00:00:00

  • Early warning indicators for mesophilic anaerobic digestion of corn stalk: a combined experimental and simulation approach.

    abstract:Background:Monitoring and providing early warning are essential operations in the anaerobic digestion (AD) process. However, there are still several challenges for identifying the early warning indicators and their thresholds. One particular challenge is that proposed strategies are only valid under certain conditions....

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1442-7

    authors: Wu Y,Kovalovszki A,Pan J,Lin C,Liu H,Duan N,Angelidaki I

    更新日期:2019-05-03 00:00:00

  • Xylan epitope profiling: an enhanced approach to study organ development-dependent changes in xylan structure, biosynthesis, and deposition in plant cell walls.

    abstract:Background:Xylan is a major hemicellulosic component in the cell walls of higher plants especially in the secondary walls of vascular cells which are playing important roles in physiological processes and overall mechanical strength. Being the second most abundant cell wall polymer after cellulose, xylan is an abundant...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0935-5

    authors: Peralta AG,Venkatachalam S,Stone SC,Pattathil S

    更新日期:2017-11-30 00:00:00

  • Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate.

    abstract:BACKGROUND:Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a maj...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0233-z

    authors: Mohagheghi A,Linger JG,Yang S,Smith H,Dowe N,Zhang M,Pienkos PT

    更新日期:2015-03-31 00:00:00

  • How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?

    abstract:Background:The need for liquid fuels in the transportation sector is increasing, and it is essential to develop industrially sustainable processes that simultaneously address the tri-fold sustainability metrics of technological feasibility, economic viability, and environmental impacts. Biorefineries based on lignocell...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0959-x

    authors: Rajendran K,Murthy GS

    更新日期:2017-11-14 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    abstract:Background:Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Societ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0945-3

    authors: Tao L,Milbrandt A,Zhang Y,Wang WC

    更新日期:2017-11-09 00:00:00

  • Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation.

    abstract:BACKGROUND:Furfural is the prevalent microbial inhibitor generated during pretreatment and hydrolysis of lignocellulose biomass to monomeric sugars, but the response of acetone butanol ethanol (ABE) producing Clostridium beijerinckii NCIMB 8052 to this compound at the molecular level is unknown. To discern the effect o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-66

    authors: Zhang Y,Ezeji TC

    更新日期:2013-05-04 00:00:00

  • From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures.

    abstract:BACKGROUND:Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0859-0

    authors: Abendroth C,Simeonov C,Peretó J,Antúnez O,Gavidia R,Luschnig O,Porcar M

    更新日期:2017-07-03 00:00:00

  • Quantitative visualization of subcellular lignocellulose revealing the mechanism of alkali pretreatment to promote methane production of rice straw.

    abstract:Background:As a renewable carbon source, biomass energy not only helps in resolving the management problems of lignocellulosic wastes, but also helps to alleviate the global climate change by controlling environmental pollution raised by their generation on a large scale. However, the bottleneck problem of extensive pr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1648-8

    authors: Li X,Sha J,Xia Y,Sheng K,Liu Y,He Y

    更新日期:2020-01-17 00:00:00

  • The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides.

    abstract:BACKGROUND:The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0519-9

    authors: Martínez PM,Appeldoorn MM,Gruppen H,Kabel MA

    更新日期:2016-05-18 00:00:00

  • Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle.

    abstract:Background:S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefacien...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1554-0

    authors: Ruan L,Li L,Zou D,Jiang C,Wen Z,Chen S,Deng Y,Wei X

    更新日期:2019-09-09 00:00:00

  • Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.

    abstract:BACKGROUND:Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be sig...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0445-x

    authors: Dumitrache A,Akinosho H,Rodriguez M Jr,Meng X,Yoo CG,Natzke J,Engle NL,Sykes RW,Tschaplinski TJ,Muchero W,Ragauskas AJ,Davison BH,Brown SD

    更新日期:2016-02-04 00:00:00

  • Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution.

    abstract:BACKGROUND:Microalgae are highly efficient cellular factories that capture CO2 and are also alternative feedstock for biofuel production. Carbohydrates, proteins, and lipids are major biochemical components in microalgae. Carbohydrates or starch in microalgae are possible substrates in yeast fermentation for biofuel pr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0753-9

    authors: Cheng D,Li D,Yuan Y,Zhou L,Li X,Wu T,Wang L,Zhao Q,Wei W,Sun Y

    更新日期:2017-03-24 00:00:00

  • A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

    abstract:BACKGROUND:Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-typ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0129-3

    authors: Mello-de-Sousa TM,Gorsche R,Rassinger A,Poças-Fonseca MJ,Mach RL,Mach-Aigner AR

    更新日期:2014-09-11 00:00:00

  • Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    abstract:BACKGROUND:Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0702-7

    authors: Yao G,Staples MD,Malina R,Tyner WE

    更新日期:2017-01-19 00:00:00

  • Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses.

    abstract:Background:Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in subm...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1060-9

    authors: Qin X,Su X,Luo H,Ma R,Yao B,Ma F

    更新日期:2018-03-02 00:00:00

  • Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce.

    abstract:Background:Acetylated galactoglucomannan (AcGGM) is a complex hemicellulose found in softwoods such as Norway spruce (Picea abies). AcGGM has a large potential as a biorefinery feedstock and source of oligosaccharides for high-value industrial applications. Steam explosion is an effective method for extraction of carbo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1300-z

    authors: Michalak L,Knutsen SH,Aarum I,Westereng B

    更新日期:2018-11-09 00:00:00

  • Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli.

    abstract:Background:n-Butyraldehyde is a high-production volume chemical produced exclusively from hydroformylation of propylene. It is a versatile chemical used in the synthesis of diverse C4-C8 alcohols, carboxylic acids, esters, and amines. Its high demand and broad applications make it an ideal chemical to be produced from ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0978-7

    authors: Ku JT,Simanjuntak W,Lan EI

    更新日期:2017-12-04 00:00:00

  • Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw.

    abstract:Background:A consolidated bioprocessing (CBP), where lignocellulose is converted into the desired product(s) in a single fermentative step without the addition of expensive degradative enzymes, represents the ideal solution of renewable routes to chemicals and fuels. Members of the genus Geobacillus are able to grow at...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1540-6

    authors: Bashir Z,Sheng L,Anil A,Lali A,Minton NP,Zhang Y

    更新日期:2019-08-20 00:00:00

  • Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations.

    abstract:BACKGROUND:When producing biofuels from dedicated feedstock, agronomic factors such as harvest time and location can impact the downstream production. Thus, this paper studies the effectiveness of ammonia fibre expansion (AFEX) pretreatment on two harvest times (July and October) and ecotypes/locations (Cave-in-Rock (C...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-3-1

    authors: Bals B,Rogers C,Jin M,Balan V,Dale B

    更新日期:2010-01-04 00:00:00

  • Peptide-mediated microalgae harvesting method for efficient biofuel production.

    abstract:BACKGROUND:Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous mic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0406-9

    authors: Maeda Y,Tateishi T,Niwa Y,Muto M,Yoshino T,Kisailus D,Tanaka T

    更新日期:2016-01-13 00:00:00

  • Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    abstract:BACKGROUND:The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood. RESULTS:In this pa...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0534-x

    authors: Güllert S,Fischer MA,Turaev D,Noebauer B,Ilmberger N,Wemheuer B,Alawi M,Rattei T,Daniel R,Schmitz RA,Grundhoff A,Streit WR

    更新日期:2016-06-07 00:00:00

  • Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar.

    abstract:BACKGROUND:Pretreatment is a key step to decrease the recalcitrance of lignocelluloses and then increase the digestibility of cellulose in second-generation bioethanol production. In this study, wood chips from triploid poplar were biopretreated with white rot fungus Trametes velutina D10149. The effects of incubation ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-42

    authors: Wang K,Yang H,Wang W,Sun RC

    更新日期:2013-03-21 00:00:00

  • Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid.

    abstract:Background:Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01727-7

    authors: Sengupta S,Jaiswal D,Sengupta A,Shah S,Gadagkar S,Wangikar PP

    更新日期:2020-05-18 00:00:00