Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices.

Abstract:

:Grit blasting is used as a cost-effective method to increase the surface roughness of metallic biomaterials, as Ti6Al4V and 316 LVM, to enhance the osteointegration, fixation and stability of implants. Samples of these two alloys were blasted by using alumina and zirconia particles, yielding rough (up to Ra~8μm) and nearly smooth (up to Ra~1μm) surfaces, respectively. In this work, we investigate the sub-surface induced microstructural effects and its correlation with the mechanical properties, with special emphasis in the fatigue behavior. Blasting with zirconia particles increases the fatigue resistance whereas the opposite effect is observed using alumina ones. As in a conventional shot penning process, the use of rounded zirconia particles for blasting led to the development of residual compressive stresses at the surface layer, without zones of stress concentrators. Alumina particles are harder and have an angular shape, which confers a higher capability to abrade the surface, but also a high rate of breaking down on impact. The higher roughness and the presence of a high amount of embedded alumina particles make the blasted alloy prone to crack nucleation. Interestingly, the beneficial or detrimental role of blasting is more intense for the Ti6Al4V alloy than for the 316 steel. It is proposed that this behavior is related to their different strain hardening exponents and the higher mass fraction of particles contaminating the surface. The low value of this exponent for the Ti6Al4V alloy justifies the expected low sub-surface hardening during the severe plastic deformation, enhancing its capability to soft during cyclic loading.

authors

Barriuso S,Chao J,Jiménez JA,García S,González-Carrasco JL

doi

10.1016/j.jmbbm.2013.10.013

subject

Has Abstract

pub_date

2014-02-01 00:00:00

pages

30-40

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(13)00340-8

journal_volume

30

pub_type

杂志文章
  • Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy.

    abstract::Laser surface melting (LSM) of Ti6Al4V alloy was carried out with an aim to improve properties such as microstructure and wear for implant applications. The alloy substrate was melted at 250W and 400W at a scan velocity of 5mm/s, with input energy of 42J/mm(2) and 68J/mm(2), respectively. The results showed that equia...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.12.001

    authors: Balla VK,Soderlind J,Bose S,Bandyopadhyay A

    更新日期:2014-04-01 00:00:00

  • Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing.

    abstract::Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corros...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.026

    authors: Salahshoor M,Li C,Liu ZY,Fang XY,Guo YB

    更新日期:2018-02-01 00:00:00

  • A method to develop mock arteries suitable for cell seeding and in-vitro cell culture experiments.

    abstract::Sylgard((R)) is a biocompatible elastomer which has been widely used in biomedical applications including in simulations of the mechanical response of soft tissues and mechanotransduction investigations. In this study the effect of fabrication parameters including base to curing agent ratio and curing time on the mech...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.04.003

    authors: Colombo A,Zahedmanesh H,Toner DM,Cahill PA,Lally C

    更新日期:2010-08-01 00:00:00

  • An adaptive finite element simulation of fretting wear damage at the head-neck taper junction of total hip replacement: The role of taper angle mismatch.

    abstract::An adaptive finite element simulation was developed to predict fretting wear in a head-neck taper junction of hip joint implant through a two dimensional (2D) model and based on the Archard wear equation. This model represents the most critical section of the head-neck junction which was identified from a 3D model of ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.003

    authors: Fallahnezhad K,Oskouei RH,Badnava H,Taylor M

    更新日期:2017-11-01 00:00:00

  • Viscoelastic parameter identification of human brain tissue.

    abstract::Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model paramet...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.014

    authors: Budday S,Sommer G,Holzapfel GA,Steinmann P,Kuhl E

    更新日期:2017-10-01 00:00:00

  • Interfascicular matrix-mediated transverse deformation and sliding of discontinuous tendon subcomponents control the viscoelasticity and failure of tendons.

    abstract::In the present article, we investigated the sliding of discontinuous tendon subcomponents and the variation of nonhomogeneous deformation in the human Achilles tendon (AT) over time using uniaxial tensile and relaxation tests. The deformation and the resulting strain distribution under uniaxial tension are examined us...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.027

    authors: Obuchowicz R,Ekiert M,Kohut P,Holak K,Ambrozinski L,Tomaszewski KA,Uhl T,Mlyniec A

    更新日期:2019-09-01 00:00:00

  • Mechanical performance, corrosion and tribological evaluation of a Co-Cr-Mo alloy processed by MIM for biomedical applications.

    abstract::In this study, the processing parameters mechanical performance, corrosion and tribological evaluation of a low carbon content Co-Cr-Mo alloy are discussed. The production of parts using the Metal Injection Moulding (MIM) process is optimized, specifically concerning the rheological analysis of the prepared feedstocks...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103706

    authors: Herranz G,Berges C,Naranjo JA,García C,Garrido I

    更新日期:2020-05-01 00:00:00

  • Mechanical characterization and modelling of the temperature-dependent impact behaviour of a biocompatible poly(L-lactide)/poly(ε-caprolactone) polymer blend.

    abstract::Poly(ε-caprolactone) (PCL) is a ductile, bioabsorbable polymer that has been employed as a blend partner for poly(L-lactic acid) (PLLA). An improvement of the material strength and impact resistance of PLLA/PCL polymer blends compared to pure PLLA has been shown previously. To use numerical simulations in the design p...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.07.007

    authors: Gustafsson G,Nishida M,Ito Y,Häggblad HÅ,Jonsén P,Takayama T,Todo M

    更新日期:2015-11-01 00:00:00

  • Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles.

    abstract::Tissue material properties are crucial to understanding their mechanical function, both in healthy and diseased states. However, in certain circumstances logistical limitations can prevent testing on fresh samples necessitating one or more freeze-thaw cycles. To date, the nature and extent to which the material proper...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.03.006

    authors: Peters AE,Comerford EJ,Macaulay S,Bates KT,Akhtar R

    更新日期:2017-07-01 00:00:00

  • Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur.

    abstract::Experimental investigations for anatomic variation in the magnitude and anisotropy of elastic constants in human femoral cortical bone tissue have typically focused on a limited number of convenient sites near the mid-diaphysis. However, the proximal and distal ends of the diaphysis are more clinically relevant to com...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.08.005

    authors: Espinoza Orías AA,Deuerling JM,Landrigan MD,Renaud JE,Roeder RK

    更新日期:2009-07-01 00:00:00

  • The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    abstract::The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired pr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.06.014

    authors: Szewciw L,Zhu D,Barthelat F

    更新日期:2017-12-01 00:00:00

  • Fatigue and durability of Nitinol stents.

    abstract::Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2007.08.001

    authors: Pelton AR,Schroeder V,Mitchell MR,Gong XY,Barney M,Robertson SW

    更新日期:2008-04-01 00:00:00

  • Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    abstract::The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue prope...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:

    authors: Bagheri ZS,El Sawi I,Bougherara H,Zdero R

    更新日期:2014-07-01 00:00:00

  • A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    abstract::In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.041

    authors: Lei Y,Masjedi S,Ferdous Z

    更新日期:2017-11-01 00:00:00

  • The impact of discrete compartments of a multi-compartment collagen-GAG scaffold on overall construct biophysical properties.

    abstract::Orthopedic interfaces such as the tendon-bone junction (TBJ) present unique challenges for biomaterials development. Here we describe a multi-compartment collagen-GAG scaffold fabricated via lyophilization that contains discrete mineralized (CGCaP) and non-mineralized (CG) regions joined by a continuous interface. Mod...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.07.016

    authors: Weisgerber DW,Kelkhoff DO,Caliari SR,Harley BA

    更新日期:2013-12-01 00:00:00

  • Development of novel zirconia implant's materials gradated design with improved bioactive surface.

    abstract::Zirconia implants are becoming a preference choice for different applications such as knee, dental, among others. In order to improve osseointegration, implant's surfaces are usually coated with bioactive materials like hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) that are very similar to the calcium pho...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.022

    authors: Faria D,Pires JM,Boccaccini AR,Carvalho O,Silva FS,Mesquita-Guimarães J

    更新日期:2019-06-01 00:00:00

  • Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate.

    abstract::The surface of commercially pure Ti (cp-Ti) substrate was grit-blasted with Al(2)O(3) powders and then wet-blasted with HAp/Ti mixed powders at room temperature. Then plasma spraying with Ti powders or HAp/Ti mixed powders on the blasted surface was carried out to form a bond coat layer, denoted as T50 and T100 bond c...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.11.001

    authors: Rakngarm A,Mutoh Y

    更新日期:2009-10-01 00:00:00

  • Quantitative/qualitative analysis of adhesive-dentin interface in the presence of 10-methacryloyloxydecyl dihydrogen phosphate.

    abstract::Dental adhesive provides effective retention of filling materials via adhesive-dentin hybridization. The use of co-monomers, such as 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), is thought to be crucial for hybridization owing to their ionic-binding to calcium and co-polymerization in the polymerizable adhe...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.12.038

    authors: Zhou J,Wurihan,Shibata Y,Tanaka R,Zhang Z,Zheng K,Li Q,Ikeda S,Gao P,Miyazaki T

    更新日期:2019-04-01 00:00:00

  • Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.

    abstract::A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water co...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.03.001

    authors: Tonsomboon K,Oyen ML

    更新日期:2013-05-01 00:00:00

  • Custom-built electrostatics and supplementary bonding in the design of reinforced Collagen-g-P(methyl methacrylate-co-ethyl acrylate)/ nylon 66 core-shell fibers.

    abstract::In this study, Acid Soluble Collagen-g-P(methyl methacrylate-co-ethyl acrylate) (CME) was synthesized to take advantage of the flexibility of the resulted branched polymer chains and the high density of their chain entanglement. The coaxial electrospinning technique was applied to study the effect of electrically and ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.002

    authors: Bazrafshan Z,Stylios GK

    更新日期:2018-11-01 00:00:00

  • Nano-indentation on amorphous calcium phosphate splats: effect of droplet size on mechanical properties.

    abstract::Droplet processing technologies and many biological processes use disk-like or hemispherical shapes for construction or the design of surfaces. The ability to tune the characteristics and properties of a surface is important at the micro- and nano-scale. The influence of size on the mechanical properties is presently ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.07.014

    authors: Saber-Samandari S,Gross KA

    更新日期:2012-12-01 00:00:00

  • Computational micromechanics of bioabsorbable magnesium stents.

    abstract::Magnesium alloys are a promising candidate material for an emerging generation of absorbable metal stents. Due to its hexagonal-close-packed lattice structure and tendency to undergo twinning, the deformation behaviour of magnesium is quite different to that of conventional stent materials, such as stainless steel 316...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.01.007

    authors: Grogan JA,Leen SB,McHugh PE

    更新日期:2014-06-01 00:00:00

  • Effects of age and loading rate on equine cortical bone failure.

    abstract::Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.09.006

    authors: Kulin RM,Jiang F,Vecchio KS

    更新日期:2011-01-01 00:00:00

  • Combined effect of the body mass index and implant size on the wear of retrieved total knee prostheses.

    abstract::Total Knee Arthroplasty is a well-established surgical procedure performed to relieve pain and to restore function in knee osteoarthritis. A proper choice of the implant size is mandatory in order to guarantee the success of the implant and to respect the bone stock of tibial plateau and femoral condyles. The aim of t...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.06.012

    authors: Battaglia S,Taddei P,Castiello E,Tozzi S,Sudanese A,Affatato S

    更新日期:2014-10-01 00:00:00

  • Modeling ultrasonic wave propagation in a dental implant - Bone system.

    abstract::The evolution of the bone-implant interface reflects the implant osseointegration and bond strength, thereby determining the overall implant stability in the jawbone. Quantitative ultrasound represents a promising alternative technique to characterize the interfacial integrity, precisely due to the fact that those wav...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103547

    authors: Dorogoy A,Haïat G,Shemtov-Yona K,Rittel D

    更新日期:2020-03-01 00:00:00

  • Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions.

    abstract::In the study, the microstructure, mechanical property and metal release behavior of selective laser melted CoCrW alloys under different solution treatment conditions were systemically investigated to assess their potential use in orthopedic implants. The effects of the solution treatment on the microstructure, mechani...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.10.019

    authors: Lu Y,Wu S,Gan Y,Zhang S,Guo S,Lin J,Lin J

    更新日期:2015-03-01 00:00:00

  • A novel prime-&-rinse mode using MDP and MMPs inhibitors improves the dentin bond durability of self-etch adhesive.

    abstract:OBJECTIVES:The study investigated the effects of novel prime-&-rinse mode using MDP (10-methacryloyloxydecyl dihydrogenphosphate) and matrix metalloproteinase (MMPs) inhibitors on dentin microtensile bond strengths (MTBS) of self-etch adhesive, resin-dentin interface degradations, and activity of recombinant human (rh)...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103698

    authors: Xu J,Li M,Wang W,Wu Z,Wang C,Jin X,Zhang L,Jiang W,Fu B

    更新日期:2020-04-01 00:00:00

  • Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    abstract::In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and e...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.007

    authors: Wei Q,Wang Y,Li X,Yang M,Chai W,Wang K,zhang Y

    更新日期:2016-04-01 00:00:00

  • Ratcheting behavior of UHMWPE reinforced by carbon nanofibers (CNF) and hydroxyapatite (HA): Experiment and simulation.

    abstract::Uniaxial tensile tests were performed to investigate the mechanical properties of the ultra-high molecular weight polyethylene (UHMWPE) with different modification conditions. It was found that the different modification conditions have great influence on the mechanical properties of the UHMWPE. Subsequently, the unia...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.08.022

    authors: Wang J,Gao H,Gao L,Cui Y,Song Z

    更新日期:2018-12-01 00:00:00

  • Correlations between transmural mechanical and morphological properties in porcine thoracic descending aorta.

    abstract::Determination of correlations between transmural mechanical and morphological properties of aorta would provide a quantitative baseline for assessment of preventive and therapeutic strategies for aortic injuries and diseases. A multimodal and multidisciplinary approach was adopted to characterize the transmural morpho...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.03.004

    authors: Hemmasizadeh A,Tsamis A,Cheheltani R,Assari S,D'Amore A,Autieri M,Kiani MF,Pleshko N,Wagner WR,Watkins SC,Vorp D,Darvish K

    更新日期:2015-07-01 00:00:00