Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis.

Abstract:

:The cell contents are encapsulated within a compartment, the volume of which is a fundamental physical parameter that may affect intracompartmental reactions. However, there have been few studies to elucidate whether and how volume changes alone can affect the reaction kinetics. It is difficult to address these questions in vivo, because forced cell volume changes, e.g., by osmotic inflation/deflation, globally alters the internal state. Here, we prepared artificial cell-like compartments with different volumes but with identical constituents, which is not possible with living cells, and synthesized two tetrameric enzymes, β-glucuronidase (GUS) and β-galactosidase (GAL), by cell-free protein synthesis. Tetrameric GUS but not GAL was synthesized more quickly in smaller compartments. The difference between the two was dependent on the rate-limiting step and the reaction order. The observed acceleration mechanism would be applicable to living cells as multimeric protein synthesis in a microcompartment is ubiquitous in vivo.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Matsuura T,Hosoda K,Kazuta Y,Ichihashi N,Suzuki H,Yomo T

doi

10.1021/sb300041z

subject

Has Abstract

pub_date

2012-09-21 00:00:00

pages

431-7

issue

9

issn

2161-5063

journal_volume

1

pub_type

杂志文章
  • Exploring Chemical Biosynthetic Design Space with Transform-MinER.

    abstract::Transform-MinER (Transforming Molecules in Enzyme Reactions) is a web application facilitating the exploration of chemical biosynthetic space, guiding the user toward promising start points for enzyme design projects or directed evolution experiments. Two types of search are possible: Molecule Search allows a user to ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00105

    authors: Tyzack JD,Ribeiro AJM,Borkakoti N,Thornton JM

    更新日期:2019-11-15 00:00:00

  • Cloning, Stability, and Modification of Mycoplasma hominis Genome in Yeast.

    abstract::Mycoplasma hominis is a minimal human pathogen that is responsible for genital and neonatal infections. Despite many attempts, there is no efficient genetic tool to manipulate this bacterium, limiting most investigations of its pathogenicity and its uncommon energy metabolism that relies on arginine. The recent clonin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00379

    authors: Rideau F,Le Roy C,Descamps ECT,Renaudin H,Lartigue C,Bébéar C

    更新日期:2017-05-19 00:00:00

  • Engineering Translational Activators with CRISPR-Cas System.

    abstract::RNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-rep...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00130

    authors: Du P,Miao C,Lou Q,Wang Z,Lou C

    更新日期:2016-01-15 00:00:00

  • Real-time mRNA measurement during an in vitro transcription and translation reaction using binary probes.

    abstract::In vitro transcription and translation reactions have become popular for a bottom-up approach to synthetic biology. Concentrations of the mRNA intermediate are rarely determined, although knowledge of synthesis and degradation rates could facilitate rational engineering of in vitro systems. We designed binary probes t...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/sb300104f

    authors: Niederholtmeyer H,Xu L,Maerkl SJ

    更新日期:2013-08-16 00:00:00

  • Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.

    abstract::To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00280

    authors: Jayaraman P,Yeoh JW,Zhang J,Poh CL

    更新日期:2018-11-16 00:00:00

  • Refactoring and optimization of light-switchable Escherichia coli two-component systems.

    abstract::Light-switchable proteins enable unparalleled control of molecular biological processes in live organisms. Previously, we have engineered red/far-red and green/red photoreversible two-component signal transduction systems (TCSs) with transcriptional outputs in E. coli and used them to characterize and control syntheti...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500273n

    authors: Schmidl SR,Sheth RU,Wu A,Tabor JJ

    更新日期:2014-11-21 00:00:00

  • A Designed A. vinelandii-S. elongatus Coculture for Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals.

    abstract::Microbial mutualisms play critical roles in a diverse number of ecosystems and have the potential to improve the efficiency of bioproduction for desirable chemicals. We investigate the growth of a photosynthetic cyanobacterium, Synechococcus elongatus PCC 7942, and a diazotroph, Azotobacter vinelandii, in coculture. F...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00107

    authors: Smith MJ,Francis MB

    更新日期:2016-09-16 00:00:00

  • A Modular High-Throughput In Vivo Screening Platform Based on Chimeric Bacterial Receptors.

    abstract::Multidrug resistance (MDR) is a globally relevant problem that requires novel approaches. Two-component systems are a promising, yet untapped target for novel antibacterials. They are prevalent in bacteria and absent in mammals, and their activity can be modulated upon perception of various stimuli. Screening pre-exis...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00288

    authors: Lehning CE,Heidelberger JB,Reinhard J,Nørholm MHH,Draheim RR

    更新日期:2017-07-21 00:00:00

  • Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    abstract::Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00211

    authors: Chomvong K,Lin E,Blaisse M,Gillespie AE,Cate JH

    更新日期:2017-02-17 00:00:00

  • ShortBOL: A Language for Scripting Designs for Engineered Biological Systems Using Synthetic Biology Open Language (SBOL).

    abstract::The Synthetic Biology Open Language (SBOL) is an emerging synthetic biology data exchange standard, designed primarily for unambiguous and efficient machine-to-machine communication. However, manual editing of SBOL is generally difficult for nontrivial designs. Here, we describe ShortBOL, a lightweight SBOL scripting ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00470

    authors: Crowther M,Grozinger L,Pocock M,Taylor CPD,McLaughlin JA,Mısırlı G,Bartley BA,Beal J,Goñi-Moreno A,Wipat A

    更新日期:2020-04-17 00:00:00

  • Switching Protein Localization by Site-Directed RNA Editing under Control of Light.

    abstract::Site directed RNA editing is an engineered tool for the posttranscriptional manipulation of RNA and proteins. Here, we demonstrate the inclusion of additional N- and C-terminal protein domains in an RNA editing-dependent manner to switch between protein isoforms in mammalian cell culture. By inclusion of localization ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00113

    authors: Vogel P,Hanswillemenke A,Stafforst T

    更新日期:2017-09-15 00:00:00

  • Exploring Catalysis Specificity of Phytoene Dehydrogenase CrtI in Carotenoid Synthesis.

    abstract::Carotenoids, a variety of natural products, have significant pharmaceutical and commercial potential. Phytoene dehydrogenase (CrtI) is the rate-limit enzyme for carotenoid synthesis, whose catalysis specificity results in various carotenoids. However, the structural characteristics of CrtI for controlling the catalysi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00128

    authors: Liang N,Chen C,Wang Y,Ding MZ,Yao MD,Xiao WH,Yuan YJ

    更新日期:2020-07-17 00:00:00

  • Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.

    abstract::2-Pyrone-4,6-dicarboxylic acid (PDC) is a pseudoaromatic dicarboxylic acid and is a promising biobased building block chemical that can be used to make diverse polyesters with novel functionalities. In this study, Escherichia coli was metabolically engineered to produce PDC from glucose. First, an efficient biosynthet...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00281

    authors: Luo ZW,Kim WJ,Lee SY

    更新日期:2018-09-21 00:00:00

  • Analog Computation by DNA Strand Displacement Circuits.

    abstract::DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include ad...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00144

    authors: Song T,Garg S,Mokhtar R,Bui H,Reif J

    更新日期:2016-08-19 00:00:00

  • Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors.

    abstract::As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutation...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400205x

    authors: Diensthuber RP,Engelhard C,Lemke N,Gleichmann T,Ohlendorf R,Bittl R,Möglich A

    更新日期:2014-11-21 00:00:00

  • Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H2S as a Signaling Molecule for Quorum Sensing.

    abstract::Microorganisms often use specific autoinducers other than common metabolites for quorum sensing (QS). Herein, we demonstrated that Escherichia coli produced sulfide (H2S, HS-, and S2-) with the concentrations proportionally correlated to its cell density. We then designed synthetic gene circuits that used H2S as an au...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00210

    authors: Liu H,Fan K,Li H,Wang Q,Yang Y,Li K,Xia Y,Xun L

    更新日期:2019-09-20 00:00:00

  • Exploring the Nonconserved Sequence Space of Synthetic Expression Modules in Bacillus subtilis.

    abstract::Increasing protein expression levels is a key step in the commercial production of enzymes. Predicting promoter activity and translation initiation efficiency based solely on consensus sequences have so far met with mixed results. Here, we addressed this challenge using a "brute-force" approach by designing and synthe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00110

    authors: Sauer C,Ver Loren van Themaat E,Boender LGM,Groothuis D,Cruz R,Hamoen LW,Harwood CR,van Rij T

    更新日期:2018-07-20 00:00:00

  • Reversing an Extracellular Electron Transfer Pathway for Electrode-Driven Acetoin Reduction.

    abstract::Microbial electrosynthesis is an emerging technology with the potential to simultaneously store renewably generated energy, fix carbon dioxide, and produce high-value organic compounds. However, limited understanding of the route of electrons into the cell remains an obstacle to developing a robust microbial electrosy...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00498

    authors: Tefft NM,TerAvest MA

    更新日期:2019-07-19 00:00:00

  • Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation.

    abstract::Multitargeting small regulatory RNAs (sRNAs) represent a potentially useful tool for metabolic engineering applications. Natural multitargeting sRNAs govern bacterial gene expression by binding to the translation initiation regions of protein-coding mRNAs through base pairing. We designed an Escherichia coli based gen...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00261

    authors: Lahiry A,Stimple SD,Wood DW,Lease RA

    更新日期:2017-04-21 00:00:00

  • Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials.

    abstract::Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00448

    authors: Charrier M,Li D,Mann VR,Yun L,Jani S,Rad B,Cohen BE,Ashby PD,Ryan KR,Ajo-Franklin CM

    更新日期:2019-01-18 00:00:00

  • DNA-Linked Enzyme-Coupled Assay for Probing Glucosyltransferase Specificity.

    abstract::Traditional enzyme characterization methods are low-throughput and therefore limit engineering efforts in synthetic biology and biotechnology. Here, we propose a DNA-linked enzyme-coupled assay (DLEnCA) to monitor enzyme reactions in a high-throughput manner. Throughput is improved by removing the need for protein pur...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500341a

    authors: Sukovich DJ,Modavi C,de Raad M,Prince RN,Anderson JC

    更新日期:2015-07-17 00:00:00

  • Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.

    abstract::Phages are biological entities found in every ecosystem. Although much has been learned about them in past decades, significant knowledge gaps remain. Manipulating virulent phage genomes is challenging. To date, no efficient gene-editing tools exist for engineering virulent lactococcal phages. Lactococcus lactis is a ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00388

    authors: Lemay ML,Tremblay DM,Moineau S

    更新日期:2017-07-21 00:00:00

  • Development of a Transcription Factor-Based Lactam Biosensor.

    abstract::Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoinformatic approach ins...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00136

    authors: Zhang J,Barajas JF,Burdu M,Ruegg TL,Dias B,Keasling JD

    更新日期:2017-03-17 00:00:00

  • Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis.

    abstract::A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00254

    authors: Duran-Nebreda S,Solé RV

    更新日期:2016-07-15 00:00:00

  • Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits.

    abstract::Strain engineering for synthetic biology and metabolic engineering applications often requires the expression of foreign proteins that can reduce cellular fitness. In order to quantify and visualize the evolutionary stability dynamics in engineered populations of Escherichia coli , we constructed randomized CMY (cyan-...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400055h

    authors: Sleight SC,Sauro HM

    更新日期:2013-09-20 00:00:00

  • Single Day Construction of Multigene Circuits with 3G Assembly.

    abstract::The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems t...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00060

    authors: Halleran AD,Swaminathan A,Murray RM

    更新日期:2018-05-18 00:00:00

  • A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    abstract::Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We id...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500363y

    authors: Cuperus JT,Lo RS,Shumaker L,Proctor J,Fields S

    更新日期:2015-07-17 00:00:00

  • Design and Characterization of an Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct Symmetry Elements.

    abstract::Exploiting simple types of symmetry common to many natural protein oligomers as a starting point, several recent studies have succeeded in engineering complex self-assembling protein architectures reminiscent but distinct from those evolved in the natural world. Designing symmetric protein cages with a wide range of p...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00392

    authors: Cannon KA,Nguyen VN,Morgan C,Yeates TO

    更新日期:2020-03-20 00:00:00

  • Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems.

    abstract::Secondary structure formation of mRNA, caused by desynchronization of transcription and translation, is known to impact gene expression in vivo. Yet, inactivation of mRNA by secondary structures in cell-free protein expression is frequently overlooked. Transcription and translation rates are often not highly synchroni...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00010

    authors: Hansen MM,Ventosa Rosquelles M,Yelleswarapu M,Maas RJ,van Vugt-Jonker AJ,Heus HA,Huck WT

    更新日期:2016-12-16 00:00:00

  • PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems.

    abstract::Quantification of biology's central dogma (transcription and translation) is pursued by a variety of methods. Direct, immediate, and ongoing quantification of these events is difficult to achieve. Common practice is to use fluorescent or luminescent proteins to report indirectly on prior cellular events, such as turni...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00450

    authors: Wick S,Walsh DI 3rd,Bobrow J,Hamad-Schifferli K,Kong DS,Thorsen T,Mroszczyk K,Carr PA

    更新日期:2019-05-17 00:00:00