Visual Categorization with Random Projection.

Abstract:

:Humans learn categories of complex objects quickly and from a few examples. Random projection has been suggested as a means to learn and categorize efficiently. We investigate how random projection affects categorization by humans and by very simple neural networks on the same stimuli and categorization tasks, and how this relates to the robustness of categories. We find that (1) drastic reduction in stimulus complexity via random projection does not degrade performance in categorization tasks by either humans or simple neural networks, (2) human accuracy and neural network accuracy are remarkably correlated, even at the level of individual stimuli, and (3) the performance of both is strongly indicated by a natural notion of category robustness.

journal_name

Neural Comput

journal_title

Neural computation

authors

Arriaga RI,Rutter D,Cakmak M,Vempala SS

doi

10.1162/NECO_a_00769

subject

Has Abstract

pub_date

2015-10-01 00:00:00

pages

2132-47

issue

10

eissn

0899-7667

issn

1530-888X

journal_volume

27

pub_type

信件
  • Clustering based on gaussian processes.

    abstract::In this letter, we develop a gaussian process model for clustering. The variances of predictive values in gaussian processes learned from a training data are shown to comprise an estimate of the support of a probability density function. The constructed variance function is then applied to construct a set of contours ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.11.3088

    authors: Kim HC,Lee J

    更新日期:2007-11-01 00:00:00

  • Supervised Determined Source Separation with Multichannel Variational Autoencoder.

    abstract::This letter proposes a multichannel source separation technique, the multichannel variational autoencoder (MVAE) method, which uses a conditional VAE (CVAE) to model and estimate the power spectrograms of the sources in a mixture. By training the CVAE using the spectrograms of training examples with source-class label...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01217

    authors: Kameoka H,Li L,Inoue S,Makino S

    更新日期:2019-09-01 00:00:00

  • Attractive periodic sets in discrete-time recurrent networks (with emphasis on fixed-point stability and bifurcations in two-neuron networks).

    abstract::We perform a detailed fixed-point analysis of two-unit recurrent neural networks with sigmoid-shaped transfer functions. Using geometrical arguments in the space of transfer function derivatives, we partition the network state-space into distinct regions corresponding to stability types of the fixed points. Unlike in ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660152002898

    authors: Tino P,Horne BG,Giles CL

    更新日期:2001-06-01 00:00:00

  • Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections and their dependences on the forms of interactions.

    abstract::Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections are investigated, and their dependences on the forms of interactions are analyzed. As the forms of interactions, we treat the double exponential coupling and the interactions derived from it: pulse coupling, ex...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/0899766053630387

    authors: Kanamaru T,Sekine M

    更新日期:2005-06-01 00:00:00

  • An integral upper bound for neural network approximation.

    abstract::Complexity of one-hidden-layer networks is studied using tools from nonlinear approximation and integration theory. For functions with suitable integral representations in the form of networks with infinitely many hidden units, upper bounds are derived on the speed of decrease of approximation error as the number of n...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.04-08-745

    authors: Kainen PC,Kůrková V

    更新日期:2009-10-01 00:00:00

  • A Distributed Framework for the Construction of Transport Maps.

    abstract::The need to reason about uncertainty in large, complex, and multimodal data sets has become increasingly common across modern scientific environments. The ability to transform samples from one distribution P to another distribution

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01172

    authors: Mesa DA,Tantiongloc J,Mendoza M,Kim S,P Coleman T

    更新日期:2019-04-01 00:00:00

  • Cortical spatiotemporal dimensionality reduction for visual grouping.

    abstract::The visual systems of many mammals, including humans, are able to integrate the geometric information of visual stimuli and perform cognitive tasks at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at the single cell level ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00738

    authors: Cocci G,Barbieri D,Citti G,Sarti A

    更新日期:2015-06-01 00:00:00

  • Effects of fast presynaptic noise in attractor neural networks.

    abstract::We study both analytically and numerically the effect of presynaptic noise on the transmission of information in attractor neural networks. The noise occurs on a very short timescale compared to that for the neuron dynamics and it produces short-time synaptic depression. This is inspired in recent neurobiological find...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976606775623342

    authors: Cortes JM,Torres JJ,Marro J,Garrido PL,Kappen HJ

    更新日期:2006-03-01 00:00:00

  • The effects of input rate and synchrony on a coincidence detector: analytical solution.

    abstract::We derive analytically the solution for the output rate of the ideal coincidence detector. The solution is for an arbitrary number of input spike trains with identical binomial count distributions (which includes Poisson statistics as a special case) and identical arbitrary pairwise cross-correlations, from zero corre...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976603321192068

    authors: Mikula S,Niebur E

    更新日期:2003-03-01 00:00:00

  • Fast population coding.

    abstract::Uncertainty coming from the noise in its neurons and the ill-posed nature of many tasks plagues neural computations. Maybe surprisingly, many studies show that the brain manipulates these forms of uncertainty in a probabilistically consistent and normative manner, and there is now a rich theoretical literature on the ...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco.2007.19.2.404

    authors: Huys QJ,Zemel RS,Natarajan R,Dayan P

    更新日期:2007-02-01 00:00:00

  • Changes in GABAB modulation during a theta cycle may be analogous to the fall of temperature during annealing.

    abstract::Changes in GABA modulation may underlie experimentally observed changes in the strength of synaptic transmission at different phases of the theta rhythm (Wyble, Linster, & Hasselmo, 1997). Analysis demonstrates that these changes improve sequence disambiguation by a neural network model of CA3. We show that in the fra...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976698300017539

    authors: Sohal VS,Hasselmo ME

    更新日期:1998-05-15 00:00:00

  • Adaptive Learning Algorithm Convergence in Passive and Reactive Environments.

    abstract::Although the number of artificial neural network and machine learning architectures is growing at an exponential pace, more attention needs to be paid to theoretical guarantees of asymptotic convergence for novel, nonlinear, high-dimensional adaptive learning algorithms. When properly understood, such guarantees can g...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01117

    authors: Golden RM

    更新日期:2018-10-01 00:00:00

  • Sufficient dimension reduction via squared-loss mutual information estimation.

    abstract::The goal of sufficient dimension reduction in supervised learning is to find the low-dimensional subspace of input features that contains all of the information about the output values that the input features possess. In this letter, we propose a novel sufficient dimension-reduction method using a squared-loss variant...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00407

    authors: Suzuki T,Sugiyama M

    更新日期:2013-03-01 00:00:00

  • Higher-order statistics of input ensembles and the response of simple model neurons.

    abstract::Pairwise correlations among spike trains recorded in vivo have been frequently reported. It has been argued that correlated activity could play an important role in the brain, because it efficiently modulates the response of a postsynaptic neuron. We show here that a neuron's output firing rate critically depends on t...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976603321043702

    authors: Kuhn A,Aertsen A,Rotter S

    更新日期:2003-01-01 00:00:00

  • Incremental active learning for optimal generalization.

    abstract::The problem of designing input signals for optimal generalization is called active learning. In this article, we give a two-stage sampling scheme for reducing both the bias and variance, and based on this scheme, we propose two active learning methods. One is the multipoint search method applicable to arbitrary models...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300014773

    authors: Sugiyama M,Ogawa H

    更新日期:2000-12-01 00:00:00

  • Propagating distributions up directed acyclic graphs.

    abstract::In a previous article, we considered game trees as graphical models. Adopting an evaluation function that returned a probability distribution over values likely to be taken at a given position, we described how to build a model of uncertainty and use it for utility-directed growth of the search tree and for deciding o...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976699300016881

    authors: Baum EB,Smith WD

    更新日期:1999-01-01 00:00:00

  • Traveling waves of excitation in neural field models: equivalence of rate descriptions and integrate-and-fire dynamics.

    abstract::Field models provide an elegant mathematical framework to analyze large-scale patterns of neural activity. On the microscopic level, these models are usually based on either a firing-rate picture or integrate-and-fire dynamics. This article shows that in spite of the large conceptual differences between the two types ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660260028656

    authors: Cremers D,Herz AV

    更新日期:2002-07-01 00:00:00

  • Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis.

    abstract::The Bayesian evidence framework has been successfully applied to the design of multilayer perceptrons (MLPs) in the work of MacKay. Nevertheless, the training of MLPs suffers from drawbacks like the nonconvex optimization problem and the choice of the number of hidden units. In support vector machines (SVMs) for class...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602753633411

    authors: Van Gestel T,Suykens JA,Lanckriet G,Lambrechts A,De Moor B,Vandewalle J

    更新日期:2002-05-01 00:00:00

  • Mismatched training and test distributions can outperform matched ones.

    abstract::In learning theory, the training and test sets are assumed to be drawn from the same probability distribution. This assumption is also followed in practical situations, where matching the training and test distributions is considered desirable. Contrary to conventional wisdom, we show that mismatched training and test...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00697

    authors: González CR,Abu-Mostafa YS

    更新日期:2015-02-01 00:00:00

  • A first-order nonhomogeneous Markov model for the response of spiking neurons stimulated by small phase-continuous signals.

    abstract::We present a first-order nonhomogeneous Markov model for the interspike-interval density of a continuously stimulated spiking neuron. The model allows the conditional interspike-interval density and the stationary interspike-interval density to be expressed as products of two separate functions, one of which describes...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.06-07-548

    authors: Tapson J,Jin C,van Schaik A,Etienne-Cummings R

    更新日期:2009-06-01 00:00:00

  • A causal perspective on the analysis of signal and noise correlations and their role in population coding.

    abstract::The role of correlations between neuronal responses is crucial to understanding the neural code. A framework used to study this role comprises a breakdown of the mutual information between stimuli and responses into terms that aim to account for different coding modalities and the distinction between different notions...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00588

    authors: Chicharro D

    更新日期:2014-06-01 00:00:00

  • The neuronal replicator hypothesis.

    abstract::We propose that replication (with mutation) of patterns of neuronal activity can occur within the brain using known neurophysiological processes. Thereby evolutionary algorithms implemented by neuro- nal circuits can play a role in cognition. Replication of structured neuronal representations is assumed in several cog...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00031

    authors: Fernando C,Goldstein R,Szathmáry E

    更新日期:2010-11-01 00:00:00

  • Formal modeling of robot behavior with learning.

    abstract::We present formal specification and verification of a robot moving in a complex network, using temporal sequence learning to avoid obstacles. Our aim is to demonstrate the benefit of using a formal approach to analyze such a system as a complementary approach to simulation. We first describe a classical closed-loop si...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00493

    authors: Kirwan R,Miller A,Porr B,Di Prodi P

    更新日期:2013-11-01 00:00:00

  • Bayesian model assessment and comparison using cross-validation predictive densities.

    abstract::In this work, we discuss practical methods for the assessment, comparison, and selection of complex hierarchical Bayesian models. A natural way to assess the goodness of the model is to estimate its future predictive capability by estimating expected utilities. Instead of just making a point estimate, it is important ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660260293292

    authors: Vehtari A,Lampinen J

    更新日期:2002-10-01 00:00:00

  • Synchrony of neuronal oscillations controlled by GABAergic reversal potentials.

    abstract::GABAergic synapse reversal potential is controlled by the concentration of chloride. This concentration can change significantly during development and as a function of neuronal activity. Thus, GABA inhibition can be hyperpolarizing, shunting, or partially depolarizing. Previous results pinpointed the conditions under...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.3.706

    authors: Jeong HY,Gutkin B

    更新日期:2007-03-01 00:00:00

  • State-Space Representations of Deep Neural Networks.

    abstract::This letter deals with neural networks as dynamical systems governed by finite difference equations. It shows that the introduction of k -many skip connections into network architectures, such as residual networks and additive dense n...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01165

    authors: Hauser M,Gunn S,Saab S Jr,Ray A

    更新日期:2019-03-01 00:00:00

  • Synchrony in heterogeneous networks of spiking neurons.

    abstract::The emergence of synchrony in the activity of large, heterogeneous networks of spiking neurons is investigated. We define the robustness of synchrony by the critical disorder at which the asynchronous state becomes linearly unstable. We show that at low firing rates, synchrony is more robust in excitatory networks tha...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300015286

    authors: Neltner L,Hansel D,Mato G,Meunier C

    更新日期:2000-07-01 00:00:00

  • Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs.

    abstract::This article presents a new theoretical framework to consider the dynamics of a stochastic spiking neuron model with general membrane response to input spike. We assume that the input spikes obey an inhomogeneous Poisson process. The stochastic process of the membrane potential then becomes a gaussian process. When a ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601317098529

    authors: Amemori KI,Ishii S

    更新日期:2001-12-01 00:00:00

  • Neural Circuits Trained with Standard Reinforcement Learning Can Accumulate Probabilistic Information during Decision Making.

    abstract::Much experimental evidence suggests that during decision making, neural circuits accumulate evidence supporting alternative options. A computational model well describing this accumulation for choices between two options assumes that the brain integrates the log ratios of the likelihoods of the sensory inputs given th...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00917

    authors: Kurzawa N,Summerfield C,Bogacz R

    更新日期:2017-02-01 00:00:00

  • Solving stereo transparency with an extended coarse-to-fine disparity energy model.

    abstract::Modeling stereo transparency with physiologically plausible mechanisms is challenging because in such frameworks, large receptive fields mix up overlapping disparities, whereas small receptive fields can reliably compute only small disparities. It seems necessary to combine information across scales. A coarse-to-fine ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00722

    authors: Li Z,Qian N

    更新日期:2015-05-01 00:00:00