Scalable Semisupervised Functional Neurocartography Reveals Canonical Neurons in Behavioral Networks.


:Large-scale data collection efforts to map the brain are underway at multiple spatial and temporal scales, but all face fundamental problems posed by high-dimensional data and intersubject variability. Even seemingly simple problems, such as identifying a neuron/brain region across animals/subjects, become exponentially more difficult in high dimensions, such as recognizing dozens of neurons/brain regions simultaneously. We present a framework and tools for functional neurocartography-the large-scale mapping of neural activity during behavioral states. Using a voltage-sensitive dye (VSD), we imaged the multifunctional responses of hundreds of leech neurons during several behaviors to identify and functionally map homologous neurons. We extracted simple features from each of these behaviors and combined them with anatomical features to create a rich medium-dimensional feature space. This enabled us to use machine learning techniques and visualizations to characterize and account for intersubject variability, piece together a canonical atlas of neural activity, and identify two behavioral networks. We identified 39 neurons (18 pairs, 3 unpaired) as part of a canonical swim network and 17 neurons (8 pairs, 1 unpaired) involved in a partially overlapping preparatory network. All neurons in the preparatory network rapidly depolarized at the onsets of each behavior, suggesting that it is part of a dedicated rapid-response network. This network is likely mediated by the S cell, and we referenced VSD recordings to an activity atlas to identify multiple cells of interest simultaneously in real time for further experiments. We targeted and electrophysiologically verified several neurons in the swim network and further showed that the S cell is presynaptic to multiple neurons in the preparatory network. This study illustrates the basic framework to map neural activity in high dimensions with large-scale recordings and how to extract the rich information necessary to perform analyses in light of intersubject variability.


Neural Comput


Neural computation


Frady EP,Kapoor A,Horvitz E,Kristan WB Jr




Has Abstract


2016-08-01 00:00:00












  • On the use of analytical expressions for the voltage distribution to analyze intracellular recordings.

    abstract::Different analytical expressions for the membrane potential distribution of membranes subject to synaptic noise have been proposed and can be very helpful in analyzing experimental data. However, all of these expressions are either approximations or limit cases, and it is not clear how they compare and which expressio...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Rudolph M,Destexhe A

    更新日期:2006-12-01 00:00:00

  • ISO learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm.

    abstract::In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed r...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Porr B,von Ferber C,Wörgötter F

    更新日期:2003-04-01 00:00:00

  • Determining Burst Firing Time Distributions from Multiple Spike Trains.

    abstract::Recent experimental findings have shown the presence of robust and cell-type-specific intraburst firing patterns in bursting neurons. We address the problem of characterizing these patterns under the assumption that the bursts exhibit well-defined firing time distributions. We propose a method for estimating these dis...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Lago-Fernández LF,Szücs A,Varona P

    更新日期:2009-04-01 00:00:00

  • Inhibition and Excitation Shape Activity Selection: Effect of Oscillations in a Decision-Making Circuit.

    abstract::Decision making is a complex task, and its underlying mechanisms that regulate behavior, such as the implementation of the coupling between physiological states and neural networks, are hard to decipher. To gain more insight into neural computations underlying ongoing binary decision-making tasks, we consider a neural...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Bose T,Reina A,Marshall JAR

    更新日期:2019-05-01 00:00:00

  • ASIC Implementation of a Nonlinear Dynamical Model for Hippocampal Prosthesis.

    abstract::A hippocampal prosthesis is a very large scale integration (VLSI) biochip that needs to be implanted in the biological brain to solve a cognitive dysfunction. In this letter, we propose a novel low-complexity, small-area, and low-power programmable hippocampal neural network application-specific integrated circuit (AS...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Qiao Z,Han Y,Han X,Xu H,Li WXY,Song D,Berger TW,Cheung RCC

    更新日期:2018-09-01 00:00:00

  • Estimating spiking irregularities under changing environments.

    abstract::We considered a gamma distribution of interspike intervals as a statistical model for neuronal spike generation. A gamma distribution is a natural extension of the Poisson process taking the effect of a refractory period into account. The model is specified by two parameters: a time-dependent firing rate and a shape p...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Miura K,Okada M,Amari S

    更新日期:2006-10-01 00:00:00

  • Populations of tightly coupled neurons: the RGC/LGN system.

    abstract::A mathematical model, of general character for the dynamic description of coupled neural oscillators is presented. The population approach that is employed applies equally to coupled cells as to populations of such coupled cells. The formulation includes stochasticity and preserves details of precisely firing neurons....

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Sirovich L

    更新日期:2008-05-01 00:00:00

  • When Not to Classify: Anomaly Detection of Attacks (ADA) on DNN Classifiers at Test Time.

    abstract::A significant threat to the recent, wide deployment of machine learning-based systems, including deep neural networks (DNNs), is adversarial learning attacks. The main focus here is on evasion attacks against DNN-based classifiers at test time. While much work has focused on devising attacks that make small perturbati...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Miller D,Wang Y,Kesidis G

    更新日期:2019-08-01 00:00:00

  • Learning object representations using a priori constraints within ORASSYLL.

    abstract::In this article, a biologically plausible and efficient object recognition system (called ORASSYLL) is introduced, based on a set of a priori constraints motivated by findings of developmental psychology and neurophysiology. These constraints are concerned with the organization of the input in local and corresponding ...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Krüger N

    更新日期:2001-02-01 00:00:00

  • Adaptive Learning Algorithm Convergence in Passive and Reactive Environments.

    abstract::Although the number of artificial neural network and machine learning architectures is growing at an exponential pace, more attention needs to be paid to theoretical guarantees of asymptotic convergence for novel, nonlinear, high-dimensional adaptive learning algorithms. When properly understood, such guarantees can g...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Golden RM

    更新日期:2018-10-01 00:00:00

  • Analysis of cluttered scenes using an elastic matching approach for stereo images.

    abstract::We present a system for the automatic interpretation of cluttered scenes containing multiple partly occluded objects in front of unknown, complex backgrounds. The system is based on an extended elastic graph matching algorithm that allows the explicit modeling of partial occlusions. Our approach extends an earlier sys...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Eckes C,Triesch J,von der Malsburg C

    更新日期:2006-06-01 00:00:00

  • Hybrid integrate-and-fire model of a bursting neuron.

    abstract::We present a reduction of a Hodgkin-Huxley (HH)--style bursting model to a hybridized integrate-and-fire (IF) formalism based on a thorough bifurcation analysis of the neuron's dynamics. The model incorporates HH--style equations to evolve the subthreshold currents and includes IF mechanisms to characterize spike even...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Breen BJ,Gerken WC,Butera RJ Jr

    更新日期:2003-12-01 00:00:00

  • Temporal coding: assembly formation through constructive interference.

    abstract::Temporal coding is studied for an oscillatory neural network model with synchronization and acceleration. The latter mechanism refers to increasing (decreasing) the phase velocity of each unit for stronger (weaker) or more coherent (decoherent) input from the other units. It has been demonstrated that acceleration gen...

    journal_title:Neural computation

    pub_type: 信件


    authors: Burwick T

    更新日期:2008-07-01 00:00:00

  • Training nu-support vector classifiers: theory and algorithms.

    abstract::The nu-support vector machine (nu-SVM) for classification proposed by Schölkopf, Smola, Williamson, and Bartlett (2000) has the advantage of using a parameter nu on controlling the number of support vectors. In this article, we investigate the relation between nu-SVM and C-SVM in detail. We show that in general they a...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Chang CC,Lin CJ

    更新日期:2001-09-01 00:00:00

  • Time-varying perturbations can distinguish among integrate-to-threshold models for perceptual decision making in reaction time tasks.

    abstract::Several integrate-to-threshold models with differing temporal integration mechanisms have been proposed to describe the accumulation of sensory evidence to a prescribed level prior to motor response in perceptual decision-making tasks. An experiment and simulation studies have shown that the introduction of time-varyi...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Zhou X,Wong-Lin K,Philip H

    更新日期:2009-08-01 00:00:00

  • Linking Neuromodulated Spike-Timing Dependent Plasticity with the Free-Energy Principle.

    abstract::The free-energy principle is a candidate unified theory for learning and memory in the brain that predicts that neurons, synapses, and neuromodulators work in a manner that minimizes free energy. However, electrophysiological data elucidating the neural and synaptic bases for this theory are lacking. Here, we propose ...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Isomura T,Sakai K,Kotani K,Jimbo Y

    更新日期:2016-09-01 00:00:00

  • Density-weighted Nyström method for computing large kernel eigensystems.

    abstract::The Nyström method is a well-known sampling-based technique for approximating the eigensystem of large kernel matrices. However, the chosen samples in the Nyström method are all assumed to be of equal importance, which deviates from the integral equation that defines the kernel eigenfunctions. Motivated by this observ...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Zhang K,Kwok JT

    更新日期:2009-01-01 00:00:00

  • Mean First Passage Memory Lifetimes by Reducing Complex Synapses to Simple Synapses.

    abstract::Memory models that store new memories by forgetting old ones have memory lifetimes that are rather short and grow only logarithmically in the number of synapses. Attempts to overcome these deficits include "complex" models of synaptic plasticity in which synapses possess internal states governing the expression of syn...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Elliott T

    更新日期:2017-06-01 00:00:00

  • Higher-order statistics of input ensembles and the response of simple model neurons.

    abstract::Pairwise correlations among spike trains recorded in vivo have been frequently reported. It has been argued that correlated activity could play an important role in the brain, because it efficiently modulates the response of a postsynaptic neuron. We show here that a neuron's output firing rate critically depends on t...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Kuhn A,Aertsen A,Rotter S

    更新日期:2003-01-01 00:00:00

  • Supervised Determined Source Separation with Multichannel Variational Autoencoder.

    abstract::This letter proposes a multichannel source separation technique, the multichannel variational autoencoder (MVAE) method, which uses a conditional VAE (CVAE) to model and estimate the power spectrograms of the sources in a mixture. By training the CVAE using the spectrograms of training examples with source-class label...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Kameoka H,Li L,Inoue S,Makino S

    更新日期:2019-09-01 00:00:00

  • Whence the Expected Free Energy?

    abstract::The expected free energy (EFE) is a central quantity in the theory of active inference. It is the quantity that all active inference agents are mandated to minimize through action, and its decomposition into extrinsic and intrinsic value terms is key to the balance of exploration and exploitation that active inference...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Millidge B,Tschantz A,Buckley CL

    更新日期:2021-01-05 00:00:00

  • Conductance-based integrate-and-fire models.

    abstract::A conductance-based model of Na+ and K+ currents underlying action potential generation is introduced by simplifying the quantitative model of Hodgkin and Huxley (HH). If the time course of rate constants can be approximated by a pulse, HH equations can be solved analytically. Pulse-based (PB) models generate action p...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Destexhe A

    更新日期:1997-04-01 00:00:00

  • Evaluating auditory performance limits: II. One-parameter discrimination with random-level variation.

    abstract::Previous studies have combined analytical models of stochastic neural responses with signal detection theory (SDT) to predict psychophysical performance limits; however, these studies have typically been limited to simple models and simple psychophysical tasks. A companion article in this issue ("Evaluating Auditory P...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Heinz MG,Colburn HS,Carney LH

    更新日期:2001-10-01 00:00:00

  • Nonlinear and noisy extension of independent component analysis: theory and its application to a pitch sensation model.

    abstract::In this letter, we propose a noisy nonlinear version of independent component analysis (ICA). Assuming that the probability density function (p. d. f.) of sources is known, a learning rule is derived based on maximum likelihood estimation (MLE). Our model involves some algorithms of noisy linear ICA (e. g., Bermond & ...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Maeda S,Song WJ,Ishii S

    更新日期:2005-01-01 00:00:00

  • A Distributed Framework for the Construction of Transport Maps.

    abstract::The need to reason about uncertainty in large, complex, and multimodal data sets has become increasingly common across modern scientific environments. The ability to transform samples from one distribution P to another distribution

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Mesa DA,Tantiongloc J,Mendoza M,Kim S,P Coleman T

    更新日期:2019-04-01 00:00:00

  • Extraction of Synaptic Input Properties in Vivo.

    abstract::Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, in vivo, the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the ...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Puggioni P,Jelitai M,Duguid I,van Rossum MCW

    更新日期:2017-07-01 00:00:00

  • On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks.

    abstract::We consider the problem of training a linear feedforward neural network by using a gradient descent-like LMS learning algorithm. The objective is to find a weight matrix for the network, by repeatedly presenting to it a finite set of examples, so that the sum of the squares of the errors is minimized. Kohonen showed t...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Luo ZQ

    更新日期:1991-07-01 00:00:00

  • Investigating the fault tolerance of neural networks.

    abstract::Particular levels of partial fault tolerance (PFT) in feedforward artificial neural networks of a given size can be obtained by redundancy (replicating a smaller normally trained network), by design (training specifically to increase PFT), and by a combination of the two (replicating a smaller PFT-trained network). Th...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Tchernev EB,Mulvaney RG,Phatak DS

    更新日期:2005-07-01 00:00:00

  • The number of synaptic inputs and the synchrony of large, sparse neuronal networks.

    abstract::The prevalence of coherent oscillations in various frequency ranges in the central nervous system raises the question of the mechanisms that synchronize large populations of neurons. We study synchronization in models of large networks of spiking neurons with random sparse connectivity. Synchrony occurs only when the ...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Golomb D,Hansel D

    更新日期:2000-05-01 00:00:00

  • Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    abstract::Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automat...

    journal_title:Neural computation

    pub_type: 杂志文章


    authors: Dong Q,Wang H,Hu Z

    更新日期:2018-02-01 00:00:00