The number of synaptic inputs and the synchrony of large, sparse neuronal networks.

Abstract:

:The prevalence of coherent oscillations in various frequency ranges in the central nervous system raises the question of the mechanisms that synchronize large populations of neurons. We study synchronization in models of large networks of spiking neurons with random sparse connectivity. Synchrony occurs only when the average number of synapses, M, that a cell receives is larger than a critical value, Mc. Below Mc, the system is in an asynchronous state. In the limit of weak coupling, assuming identical neurons, we reduce the model to a system of phase oscillators that are coupled via an effective interaction, gamma. In this framework, we develop an approximate theory for sparse networks of identical neurons to estimate Mc analytically from the Fourier coefficients of gamma. Our approach relies on the assumption that the dynamics of a neuron depend mainly on the number of cells that are presynaptic to it. We apply this theory to compute Mc for a model of inhibitory networks of integrate-and-fire (I&F) neurons as a function of the intrinsic neuronal properties (e.g., the refractory period Tr), the synaptic time constants, and the strength of the external stimulus, Iext. The number Mc is found to be nonmonotonous with the strength of Iext. For Tr = 0, we estimate the minimum value of Mc over all the parameters of the model to be 363.8. Above Mc, the neurons tend to fire in smeared one-cluster states at high firing rates and smeared two-or-more-cluster states at low firing rates. Refractoriness decreases Mc at intermediate and high firing rates. These results are compared to numerical simulations. We show numerically that systems with different sizes, N, behave in the same way provided the connectivity, M, is such that 1/Meff = 1/M - 1/N remains constant when N varies. This allows extrapolating the large N behavior of a network from numerical simulations of networks of relatively small sizes (N = 800 in our case). We find that our theory predicts with remarkable accuracy the value of Mc and the patterns of synchrony above Mc, provided the synaptic coupling is not too large. We also study the strong coupling regime of inhibitory sparse networks. All of our simulations demonstrate that increasing the coupling strength reduces the level of synchrony of the neuronal activity. Above a critical coupling strength, the network activity is asynchronous. We point out a fundamental limitation for the mechanisms of synchrony relying on inhibition alone, if heterogeneities in the intrinsic properties of the neurons and spatial fluctuations in the external input are also taken into account.

journal_name

Neural Comput

journal_title

Neural computation

authors

Golomb D,Hansel D

doi

10.1162/089976600300015529

subject

Has Abstract

pub_date

2000-05-01 00:00:00

pages

1095-139

issue

5

eissn

0899-7667

issn

1530-888X

journal_volume

12

pub_type

杂志文章
  • Random embedding machines for pattern recognition.

    abstract::Real classification problems involve structured data that can be essentially grouped into a relatively small number of clusters. It is shown that, under a local clustering condition, a set of points of a given class, embedded in binary space by a set of randomly parameterized surfaces, is linearly separable from other...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601753196012

    authors: Baram Y

    更新日期:2001-11-01 00:00:00

  • Connection topology selection in central pattern generators by maximizing the gain of information.

    abstract::A study of a general central pattern generator (CPG) is carried out by means of a measure of the gain of information between the number of available topology configurations and the output rhythmic activity. The neurons of the CPG are chaotic Hindmarsh-Rose models that cooperate dynamically to generate either chaotic o...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.4.974

    authors: Stiesberg GR,Reyes MB,Varona P,Pinto RD,Huerta R

    更新日期:2007-04-01 00:00:00

  • Estimating spiking irregularities under changing environments.

    abstract::We considered a gamma distribution of interspike intervals as a statistical model for neuronal spike generation. A gamma distribution is a natural extension of the Poisson process taking the effect of a refractory period into account. The model is specified by two parameters: a time-dependent firing rate and a shape p...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2006.18.10.2359

    authors: Miura K,Okada M,Amari S

    更新日期:2006-10-01 00:00:00

  • On the use of analytical expressions for the voltage distribution to analyze intracellular recordings.

    abstract::Different analytical expressions for the membrane potential distribution of membranes subject to synaptic noise have been proposed and can be very helpful in analyzing experimental data. However, all of these expressions are either approximations or limit cases, and it is not clear how they compare and which expressio...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2006.18.12.2917

    authors: Rudolph M,Destexhe A

    更新日期:2006-12-01 00:00:00

  • Minimizing binding errors using learned conjunctive features.

    abstract::We have studied some of the design trade-offs governing visual representations based on spatially invariant conjunctive feature detectors, with an emphasis on the susceptibility of such systems to false-positive recognition errors-Malsburg's classical binding problem. We begin by deriving an analytical model that make...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300015574

    authors: Mel BW,Fiser J

    更新日期:2000-04-01 00:00:00

  • Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation.

    abstract::To date, Hebbian learning combined with some form of constraint on synaptic inputs has been demonstrated to describe well the development of neural networks. The previous models revealed mathematically the importance of synaptic constraints to reproduce orientation selectivity in the visual cortical neurons, but biolo...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.04-08-752

    authors: Tanaka S,Miyashita M

    更新日期:2009-09-01 00:00:00

  • Abstract stimulus-specific adaptation models.

    abstract::Many neurons that initially respond to a stimulus stop responding if the stimulus is presented repeatedly but recover their response if a different stimulus is presented. This phenomenon is referred to as stimulus-specific adaptation (SSA). SSA has been investigated extensively using oddball experiments, which measure...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00077

    authors: Mill R,Coath M,Wennekers T,Denham SL

    更新日期:2011-02-01 00:00:00

  • A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity.

    abstract::Reservoir computing is a biologically inspired class of learning algorithms in which the intrinsic dynamics of a recurrent neural network are mined to produce target time series. Most existing reservoir computing algorithms rely on fully supervised learning rules, which require access to an exact copy of the target re...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01198

    authors: Pyle R,Rosenbaum R

    更新日期:2019-07-01 00:00:00

  • A Mathematical Analysis of Memory Lifetime in a Simple Network Model of Memory.

    abstract::We study the learning of an external signal by a neural network and the time to forget it when this network is submitted to noise. The presentation of an external stimulus to the recurrent network of binary neurons may change the state of the synapses. Multiple presentations of a unique signal lead to its learning. Th...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01286

    authors: Helson P

    更新日期:2020-07-01 00:00:00

  • Neural associative memory with optimal Bayesian learning.

    abstract::Neural associative memories are perceptron-like single-layer networks with fast synaptic learning typically storing discrete associations between pairs of neural activity patterns. Previous work optimized the memory capacity for various models of synaptic learning: linear Hopfield-type rules, the Willshaw model employ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00127

    authors: Knoblauch A

    更新日期:2011-06-01 00:00:00

  • A semiparametric Bayesian model for detecting synchrony among multiple neurons.

    abstract::We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their cofiring (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1s (spike) and 0s (silence) for each neuron ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00631

    authors: Shahbaba B,Zhou B,Lan S,Ombao H,Moorman D,Behseta S

    更新日期:2014-09-01 00:00:00

  • Synchrony of neuronal oscillations controlled by GABAergic reversal potentials.

    abstract::GABAergic synapse reversal potential is controlled by the concentration of chloride. This concentration can change significantly during development and as a function of neuronal activity. Thus, GABA inhibition can be hyperpolarizing, shunting, or partially depolarizing. Previous results pinpointed the conditions under...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.3.706

    authors: Jeong HY,Gutkin B

    更新日期:2007-03-01 00:00:00

  • Learning object representations using a priori constraints within ORASSYLL.

    abstract::In this article, a biologically plausible and efficient object recognition system (called ORASSYLL) is introduced, based on a set of a priori constraints motivated by findings of developmental psychology and neurophysiology. These constraints are concerned with the organization of the input in local and corresponding ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601300014583

    authors: Krüger N

    更新日期:2001-02-01 00:00:00

  • Resonator Networks, 2: Factorization Performance and Capacity Compared to Optimization-Based Methods.

    abstract::We develop theoretical foundations of resonator networks, a new type of recurrent neural network introduced in Frady, Kent, Olshausen, and Sommer (2020), a companion article in this issue, to solve a high-dimensional vector factorization problem arising in Vector Symbolic Architectures. Given a composite vector formed...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01329

    authors: Kent SJ,Frady EP,Sommer FT,Olshausen BA

    更新日期:2020-12-01 00:00:00

  • Machine Learning: Deepest Learning as Statistical Data Assimilation Problems.

    abstract::We formulate an equivalence between machine learning and the formulation of statistical data assimilation as used widely in physical and biological sciences. The correspondence is that layer number in a feedforward artificial network setting is the analog of time in the data assimilation setting. This connection has b...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01094

    authors: Abarbanel HDI,Rozdeba PJ,Shirman S

    更新日期:2018-08-01 00:00:00

  • Parameter learning for alpha integration.

    abstract::In pattern recognition, data integration is an important issue, and when properly done, it can lead to improved performance. Also, data integration can be used to help model and understand multimodal processing in the brain. Amari proposed α-integration as a principled way of blending multiple positive measures (e.g.,...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00445

    authors: Choi H,Choi S,Choe Y

    更新日期:2013-06-01 00:00:00

  • Nonmonotonic generalization bias of Gaussian mixture models.

    abstract::Theories of learning and generalization hold that the generalization bias, defined as the difference between the training error and the generalization error, increases on average with the number of adaptive parameters. This article, however, shows that this general tendency is violated for a gaussian mixture model. Fo...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300015439

    authors: Akaho S,Kappen HJ

    更新日期:2000-06-01 00:00:00

  • A first-order nonhomogeneous Markov model for the response of spiking neurons stimulated by small phase-continuous signals.

    abstract::We present a first-order nonhomogeneous Markov model for the interspike-interval density of a continuously stimulated spiking neuron. The model allows the conditional interspike-interval density and the stationary interspike-interval density to be expressed as products of two separate functions, one of which describes...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.06-07-548

    authors: Tapson J,Jin C,van Schaik A,Etienne-Cummings R

    更新日期:2009-06-01 00:00:00

  • Are loss functions all the same?

    abstract::In this letter, we investigate the impact of choosing different loss functions from the viewpoint of statistical learning theory. We introduce a convexity assumption, which is met by all loss functions commonly used in the literature, and study how the bound on the estimation error changes with the loss. We also deriv...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976604773135104

    authors: Rosasco L,De Vito E,Caponnetto A,Piana M,Verri A

    更新日期:2004-05-01 00:00:00

  • A Unifying Framework of Synaptic and Intrinsic Plasticity in Neural Populations.

    abstract::A neuronal population is a computational unit that receives a multivariate, time-varying input signal and creates a related multivariate output. These neural signals are modeled as stochastic processes that transmit information in real time, subject to stochastic noise. In a stationary environment, where the input sig...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01057

    authors: Leugering J,Pipa G

    更新日期:2018-04-01 00:00:00

  • Normalization enables robust validation of disparity estimates from neural populations.

    abstract::Binocular fusion takes place over a limited region smaller than one degree of visual angle (Panum's fusional area), which is on the order of the range of preferred disparities measured in populations of disparity-tuned neurons in the visual cortex. However, the actual range of binocular disparities encountered in natu...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco.2008.05-07-532

    authors: Tsang EK,Shi BE

    更新日期:2008-10-01 00:00:00

  • Computing with self-excitatory cliques: A model and an application to hyperacuity-scale computation in visual cortex.

    abstract::We present a model of visual computation based on tightly inter-connected cliques of pyramidal cells. It leads to a formal theory of cell assemblies, a specific relationship between correlated firing patterns and abstract functionality, and a direct calculation relating estimates of cortical cell counts to orientation...

    journal_title:Neural computation

    pub_type: 杂志文章,评审

    doi:10.1162/089976699300016782

    authors: Miller DA,Zucker SW

    更新日期:1999-01-01 00:00:00

  • Information loss in an optimal maximum likelihood decoding.

    abstract::The mutual information between a set of stimuli and the elicited neural responses is compared to the corresponding decoded information. The decoding procedure is presented as an artificial distortion of the joint probabilities between stimuli and responses. The information loss is quantified. Whenever the probabilitie...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602317318947

    authors: Samengo I

    更新日期:2002-04-01 00:00:00

  • Investigating the fault tolerance of neural networks.

    abstract::Particular levels of partial fault tolerance (PFT) in feedforward artificial neural networks of a given size can be obtained by redundancy (replicating a smaller normally trained network), by design (training specifically to increase PFT), and by a combination of the two (replicating a smaller PFT-trained network). Th...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/0899766053723096

    authors: Tchernev EB,Mulvaney RG,Phatak DS

    更新日期:2005-07-01 00:00:00

  • Characterization of minimum error linear coding with sensory and neural noise.

    abstract::Robust coding has been proposed as a solution to the problem of minimizing decoding error in the presence of neural noise. Many real-world problems, however, have degradation in the input signal, not just in neural representations. This generalized problem is more relevant to biological sensory coding where internal n...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00181

    authors: Doi E,Lewicki MS

    更新日期:2011-10-01 00:00:00

  • Active Learning for Enumerating Local Minima Based on Gaussian Process Derivatives.

    abstract::We study active learning (AL) based on gaussian processes (GPs) for efficiently enumerating all of the local minimum solutions of a black-box function. This problem is challenging because local solutions are characterized by their zero gradient and positive-definite Hessian properties, but those derivatives cannot be ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01307

    authors: Inatsu Y,Sugita D,Toyoura K,Takeuchi I

    更新日期:2020-10-01 00:00:00

  • Clustering based on gaussian processes.

    abstract::In this letter, we develop a gaussian process model for clustering. The variances of predictive values in gaussian processes learned from a training data are shown to comprise an estimate of the support of a probability density function. The constructed variance function is then applied to construct a set of contours ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.11.3088

    authors: Kim HC,Lee J

    更新日期:2007-11-01 00:00:00

  • ASIC Implementation of a Nonlinear Dynamical Model for Hippocampal Prosthesis.

    abstract::A hippocampal prosthesis is a very large scale integration (VLSI) biochip that needs to be implanted in the biological brain to solve a cognitive dysfunction. In this letter, we propose a novel low-complexity, small-area, and low-power programmable hippocampal neural network application-specific integrated circuit (AS...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01107

    authors: Qiao Z,Han Y,Han X,Xu H,Li WXY,Song D,Berger TW,Cheung RCC

    更新日期:2018-09-01 00:00:00

  • Sparse coding on the spot: spontaneous retinal waves suffice for orientation selectivity.

    abstract::Ohshiro, Hussain, and Weliky (2011) recently showed that ferrets reared with exposure to flickering spot stimuli, in the absence of oriented visual experience, develop oriented receptive fields. They interpreted this as refutation of efficient coding models, which require oriented input in order to develop oriented re...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00333

    authors: Hunt JJ,Ibbotson M,Goodhill GJ

    更新日期:2012-09-01 00:00:00

  • Capturing the Forest but Missing the Trees: Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics.

    abstract::The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Pr...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco_a_01229

    authors: Shaw SB,Dhindsa K,Reilly JP,Becker S

    更新日期:2019-11-01 00:00:00