Spiking neural P systems with astrocytes.

Abstract:

:In a biological nervous system, astrocytes play an important role in the functioning and interaction of neurons, and astrocytes have excitatory and inhibitory influence on synapses. In this work, with this biological inspiration, a class of computation devices that consist of neurons and astrocytes is introduced, called spiking neural P systems with astrocytes (SNPA systems). The computation power of SNPA systems is investigated. It is proved that SNPA systems with simple neurons (all neurons have the same rule, one per neuron, of a very simple form) are Turing universal in both generative and accepting modes. If a bound is given on the number of spikes present in any neuron along a computation, then the computation power of SNPA systems is diminished. In this case, a characterization of semilinear sets of numbers is obtained.

journal_name

Neural Comput

journal_title

Neural computation

authors

Pan L,Wang J,Hoogeboom HJ

doi

10.1162/NECO_a_00238

subject

Has Abstract

pub_date

2012-03-01 00:00:00

pages

805-25

issue

3

eissn

0899-7667

issn

1530-888X

journal_volume

24

pub_type

杂志文章
  • Normalization enables robust validation of disparity estimates from neural populations.

    abstract::Binocular fusion takes place over a limited region smaller than one degree of visual angle (Panum's fusional area), which is on the order of the range of preferred disparities measured in populations of disparity-tuned neurons in the visual cortex. However, the actual range of binocular disparities encountered in natu...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco.2008.05-07-532

    authors: Tsang EK,Shi BE

    更新日期:2008-10-01 00:00:00

  • Abstract stimulus-specific adaptation models.

    abstract::Many neurons that initially respond to a stimulus stop responding if the stimulus is presented repeatedly but recover their response if a different stimulus is presented. This phenomenon is referred to as stimulus-specific adaptation (SSA). SSA has been investigated extensively using oddball experiments, which measure...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00077

    authors: Mill R,Coath M,Wennekers T,Denham SL

    更新日期:2011-02-01 00:00:00

  • A sensorimotor map: modulating lateral interactions for anticipation and planning.

    abstract::Experimental studies of reasoning and planned behavior have provided evidence that nervous systems use internal models to perform predictive motor control, imagery, inference, and planning. Classical (model-free) reinforcement learning approaches omit such a model; standard sensorimotor models account for forward and ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976606776240995

    authors: Toussaint M

    更新日期:2006-05-01 00:00:00

  • Variations on the Theme of Synaptic Filtering: A Comparison of Integrate-and-Express Models of Synaptic Plasticity for Memory Lifetimes.

    abstract::Integrate-and-express models of synaptic plasticity propose that synapses integrate plasticity induction signals before expressing synaptic plasticity. By discerning trends in their induction signals, synapses can control destabilizing fluctuations in synaptic strength. In a feedforward perceptron framework with binar...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00889

    authors: Elliott T

    更新日期:2016-11-01 00:00:00

  • Kernels for longitudinal data with variable sequence length and sampling intervals.

    abstract::We develop several kernel methods for classification of longitudinal data and apply them to detect cognitive decline in the elderly. We first develop mixed-effects models, a type of hierarchical empirical Bayes generative models, for the time series. After demonstrating their utility in likelihood ratio classifiers (a...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00164

    authors: Lu Z,Leen TK,Kaye J

    更新日期:2011-09-01 00:00:00

  • Resonator Networks, 2: Factorization Performance and Capacity Compared to Optimization-Based Methods.

    abstract::We develop theoretical foundations of resonator networks, a new type of recurrent neural network introduced in Frady, Kent, Olshausen, and Sommer (2020), a companion article in this issue, to solve a high-dimensional vector factorization problem arising in Vector Symbolic Architectures. Given a composite vector formed...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01329

    authors: Kent SJ,Frady EP,Sommer FT,Olshausen BA

    更新日期:2020-12-01 00:00:00

  • Generalization and selection of examples in feedforward neural networks.

    abstract::In this work, we study how the selection of examples affects the learning procedure in a boolean neural network and its relationship with the complexity of the function under study and its architecture. We analyze the generalization capacity for different target functions with particular architectures through an analy...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300014999

    authors: Franco L,Cannas SA

    更新日期:2000-10-01 00:00:00

  • Capturing the Forest but Missing the Trees: Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics.

    abstract::The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Pr...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco_a_01229

    authors: Shaw SB,Dhindsa K,Reilly JP,Becker S

    更新日期:2019-11-01 00:00:00

  • A Novel Reconstruction Framework for Time-Encoded Signals with Integrate-and-Fire Neurons.

    abstract::Integrate-and-fire neurons are time encoding machines that convert the amplitude of an analog signal into a nonuniform, strictly increasing sequence of spike times. Under certain conditions, the encoded signals can be reconstructed from the nonuniform spike time sequences using a time decoding machine. Time encoding a...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00764

    authors: Florescu D,Coca D

    更新日期:2015-09-01 00:00:00

  • Online Reinforcement Learning Using a Probability Density Estimation.

    abstract::Function approximation in online, incremental, reinforcement learning needs to deal with two fundamental problems: biased sampling and nonstationarity. In this kind of task, biased sampling occurs because samples are obtained from specific trajectories dictated by the dynamics of the environment and are usually concen...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00906

    authors: Agostini A,Celaya E

    更新日期:2017-01-01 00:00:00

  • Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.

    abstract::To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.1997.9.5.971

    authors: Troyer TW,Miller KD

    更新日期:1997-07-01 00:00:00

  • Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis.

    abstract::The Bayesian evidence framework has been successfully applied to the design of multilayer perceptrons (MLPs) in the work of MacKay. Nevertheless, the training of MLPs suffers from drawbacks like the nonconvex optimization problem and the choice of the number of hidden units. In support vector machines (SVMs) for class...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602753633411

    authors: Van Gestel T,Suykens JA,Lanckriet G,Lambrechts A,De Moor B,Vandewalle J

    更新日期:2002-05-01 00:00:00

  • An amplitude equation approach to contextual effects in visual cortex.

    abstract::A mathematical theory of interacting hypercolumns in primary visual cortex (V1) is presented that incorporates details concerning the anisotropic nature of long-range lateral connections. Each hypercolumn is modeled as a ring of interacting excitatory and inhibitory neural populations with orientation preferences over...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602317250870

    authors: Bressloff PC,Cowan JD

    更新日期:2002-03-01 00:00:00

  • A bio-inspired, computational model suggests velocity gradients of optic flow locally encode ordinal depth at surface borders and globally they encode self-motion.

    abstract::Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such veloc...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00479

    authors: Raudies F,Ringbauer S,Neumann H

    更新日期:2013-09-01 00:00:00

  • An integral upper bound for neural network approximation.

    abstract::Complexity of one-hidden-layer networks is studied using tools from nonlinear approximation and integration theory. For functions with suitable integral representations in the form of networks with infinitely many hidden units, upper bounds are derived on the speed of decrease of approximation error as the number of n...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.04-08-745

    authors: Kainen PC,Kůrková V

    更新日期:2009-10-01 00:00:00

  • Maintaining Consistency of Spatial Information in the Hippocampal Network: A Combinatorial Geometry Model.

    abstract::Place cells in the rat hippocampus play a key role in creating the animal's internal representation of the world. During active navigation, these cells spike only in discrete locations, together encoding a map of the environment. Electrophysiological recordings have shown that the animal can revisit this map mentally ...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/NECO_a_00840

    authors: Dabaghian Y

    更新日期:2016-06-01 00:00:00

  • Sufficient dimension reduction via squared-loss mutual information estimation.

    abstract::The goal of sufficient dimension reduction in supervised learning is to find the low-dimensional subspace of input features that contains all of the information about the output values that the input features possess. In this letter, we propose a novel sufficient dimension-reduction method using a squared-loss variant...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00407

    authors: Suzuki T,Sugiyama M

    更新日期:2013-03-01 00:00:00

  • An internal model for acquisition and retention of motor learning during arm reaching.

    abstract::Humans have the ability to learn novel motor tasks while manipulating the environment. Several models of motor learning have been proposed in the literature, but few of them address the problem of retention and interference of motor memory. The modular selection and identification for control (MOSAIC) model, originall...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.03-08-721

    authors: Lonini L,Dipietro L,Zollo L,Guglielmelli E,Krebs HI

    更新日期:2009-07-01 00:00:00

  • ISO learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm.

    abstract::In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed r...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660360581930

    authors: Porr B,von Ferber C,Wörgötter F

    更新日期:2003-04-01 00:00:00

  • Simultaneous rate-synchrony codes in populations of spiking neurons.

    abstract::Firing rates and synchronous firing are often simultaneously relevant signals, and they independently or cooperatively represent external sensory inputs, cognitive events, and environmental situations such as body position. However, how rates and synchrony comodulate and which aspects of inputs are effectively encoded...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976606774841521

    authors: Masuda N

    更新日期:2006-01-01 00:00:00

  • Direct estimation of inhomogeneous Markov interval models of spike trains.

    abstract::A necessary ingredient for a quantitative theory of neural coding is appropriate "spike kinematics": a precise description of spike trains. While summarizing experiments by complete spike time collections is clearly inefficient and probably unnecessary, the most common probabilistic model used in neurophysiology, the ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.07-08-828

    authors: Wójcik DK,Mochol G,Jakuczun W,Wypych M,Waleszczyk WJ

    更新日期:2009-08-01 00:00:00

  • Active Learning for Enumerating Local Minima Based on Gaussian Process Derivatives.

    abstract::We study active learning (AL) based on gaussian processes (GPs) for efficiently enumerating all of the local minimum solutions of a black-box function. This problem is challenging because local solutions are characterized by their zero gradient and positive-definite Hessian properties, but those derivatives cannot be ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01307

    authors: Inatsu Y,Sugita D,Toyoura K,Takeuchi I

    更新日期:2020-10-01 00:00:00

  • Design of charge-balanced time-optimal stimuli for spiking neuron oscillators.

    abstract::In this letter, we investigate the fundamental limits on how the interspike time of a neuron oscillator can be perturbed by the application of a bounded external control input (a current stimulus) with zero net electric charge accumulation. We use phase models to study the dynamics of neurons and derive charge-balance...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00643

    authors: Dasanayake IS,Li JS

    更新日期:2014-10-01 00:00:00

  • Learning Precise Spike Train-to-Spike Train Transformations in Multilayer Feedforward Neuronal Networks.

    abstract::We derive a synaptic weight update rule for learning temporally precise spike train-to-spike train transformations in multilayer feedforward networks of spiking neurons. The framework, aimed at seamlessly generalizing error backpropagation to the deterministic spiking neuron setting, is based strictly on spike timing ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00829

    authors: Banerjee A

    更新日期:2016-05-01 00:00:00

  • Nonlinear and noisy extension of independent component analysis: theory and its application to a pitch sensation model.

    abstract::In this letter, we propose a noisy nonlinear version of independent component analysis (ICA). Assuming that the probability density function (p. d. f.) of sources is known, a learning rule is derived based on maximum likelihood estimation (MLE). Our model involves some algorithms of noisy linear ICA (e. g., Bermond & ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/0899766052530866

    authors: Maeda S,Song WJ,Ishii S

    更新日期:2005-01-01 00:00:00

  • Density-weighted Nyström method for computing large kernel eigensystems.

    abstract::The Nyström method is a well-known sampling-based technique for approximating the eigensystem of large kernel matrices. However, the chosen samples in the Nyström method are all assumed to be of equal importance, which deviates from the integral equation that defines the kernel eigenfunctions. Motivated by this observ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2008.11-07-651

    authors: Zhang K,Kwok JT

    更新日期:2009-01-01 00:00:00

  • Computing sparse representations of multidimensional signals using Kronecker bases.

    abstract::Recently there has been great interest in sparse representations of signals under the assumption that signals (data sets) can be well approximated by a linear combination of few elements of a known basis (dictionary). Many algorithms have been developed to find such representations for one-dimensional signals (vectors...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00385

    authors: Caiafa CF,Cichocki A

    更新日期:2013-01-01 00:00:00

  • Neuronal assembly dynamics in supervised and unsupervised learning scenarios.

    abstract::The dynamic formation of groups of neurons--neuronal assemblies--is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00502

    authors: Moioli RC,Husbands P

    更新日期:2013-11-01 00:00:00

  • Training nu-support vector classifiers: theory and algorithms.

    abstract::The nu-support vector machine (nu-SVM) for classification proposed by Schölkopf, Smola, Williamson, and Bartlett (2000) has the advantage of using a parameter nu on controlling the number of support vectors. In this article, we investigate the relation between nu-SVM and C-SVM in detail. We show that in general they a...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601750399335

    authors: Chang CC,Lin CJ

    更新日期:2001-09-01 00:00:00

  • Neural associative memory with optimal Bayesian learning.

    abstract::Neural associative memories are perceptron-like single-layer networks with fast synaptic learning typically storing discrete associations between pairs of neural activity patterns. Previous work optimized the memory capacity for various models of synaptic learning: linear Hopfield-type rules, the Willshaw model employ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00127

    authors: Knoblauch A

    更新日期:2011-06-01 00:00:00