Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.

Abstract:

:To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the experimentally measured integrative properties of cortical regular spiking cells (McCormick, Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-spike voltage reset is set to match experimental measurements of neuronal gain (obtained from in vitro plots of firing frequency versus injected current). Examination of the resulting model leads to an intuitive picture of neuronal integration that unifies the seemingly contradictory 1/square root of N and random walk pictures that have previously been proposed. When ISIs are dominated by postspike recovery, 1/square root of N arguments hold and spiking is regular; after the "memory" of the last spike becomes negligible, spike threshold crossing is caused by input variance around a steady state and spiking is Poisson. In integrate-and-fire neurons matched to cortical cell physiology, steady-state behavior is predominant, and ISIs are highly variable at all physiological firing rates and for a wide range of inhibitory and excitatory inputs.

journal_name

Neural Comput

journal_title

Neural computation

authors

Troyer TW,Miller KD

doi

10.1162/neco.1997.9.5.971

subject

Has Abstract

pub_date

1997-07-01 00:00:00

pages

971-83

issue

5

eissn

0899-7667

issn

1530-888X

journal_volume

9

pub_type

杂志文章
  • Positive Neural Networks in Discrete Time Implement Monotone-Regular Behaviors.

    abstract::We study the expressive power of positive neural networks. The model uses positive connection weights and multiple input neurons. Different behaviors can be expressed by varying the connection weights. We show that in discrete time and in the absence of noise, the class of positive neural networks captures the so-call...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00789

    authors: Ameloot TJ,Van den Bussche J

    更新日期:2015-12-01 00:00:00

  • The neuronal replicator hypothesis.

    abstract::We propose that replication (with mutation) of patterns of neuronal activity can occur within the brain using known neurophysiological processes. Thereby evolutionary algorithms implemented by neuro- nal circuits can play a role in cognition. Replication of structured neuronal representations is assumed in several cog...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00031

    authors: Fernando C,Goldstein R,Szathmáry E

    更新日期:2010-11-01 00:00:00

  • Invariant global motion recognition in the dorsal visual system: a unifying theory.

    abstract::The motion of an object (such as a wheel rotating) is seen as consistent independent of its position and size on the retina. Neurons in higher cortical visual areas respond to these global motion stimuli invariantly, but neurons in early cortical areas with small receptive fields cannot represent this motion, not only...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.1.139

    authors: Rolls ET,Stringer SM

    更新日期:2007-01-01 00:00:00

  • Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.

    abstract::Spiking neural networks (SNNs) with the event-driven manner of transmitting spikes consume ultra-low power on neuromorphic chips. However, training deep SNNs is still challenging compared to convolutional neural networks (CNNs). The SNN training algorithms have not achieved the same performance as CNNs. In this letter...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01319

    authors: Chen R,Li L

    更新日期:2020-12-01 00:00:00

  • McCulloch-Pitts Brains and Pseudorandom Functions.

    abstract::In a pioneering classic, Warren McCulloch and Walter Pitts proposed a model of the central nervous system. Motivated by EEG recordings of normal brain activity, Chvátal and Goldsmith asked whether these dynamical systems can be engineered to produce trajectories that are irregular, disorderly, and apparently unpredict...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00841

    authors: Chvátal V,Goldsmith M,Yang N

    更新日期:2016-06-01 00:00:00

  • Capturing the Forest but Missing the Trees: Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics.

    abstract::The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Pr...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco_a_01229

    authors: Shaw SB,Dhindsa K,Reilly JP,Becker S

    更新日期:2019-11-01 00:00:00

  • Learning object representations using a priori constraints within ORASSYLL.

    abstract::In this article, a biologically plausible and efficient object recognition system (called ORASSYLL) is introduced, based on a set of a priori constraints motivated by findings of developmental psychology and neurophysiology. These constraints are concerned with the organization of the input in local and corresponding ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601300014583

    authors: Krüger N

    更新日期:2001-02-01 00:00:00

  • Scalable Semisupervised Functional Neurocartography Reveals Canonical Neurons in Behavioral Networks.

    abstract::Large-scale data collection efforts to map the brain are underway at multiple spatial and temporal scales, but all face fundamental problems posed by high-dimensional data and intersubject variability. Even seemingly simple problems, such as identifying a neuron/brain region across animals/subjects, become exponential...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00852

    authors: Frady EP,Kapoor A,Horvitz E,Kristan WB Jr

    更新日期:2016-08-01 00:00:00

  • Characterization of minimum error linear coding with sensory and neural noise.

    abstract::Robust coding has been proposed as a solution to the problem of minimizing decoding error in the presence of neural noise. Many real-world problems, however, have degradation in the input signal, not just in neural representations. This generalized problem is more relevant to biological sensory coding where internal n...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00181

    authors: Doi E,Lewicki MS

    更新日期:2011-10-01 00:00:00

  • Binocular receptive field models, disparity tuning, and characteristic disparity.

    abstract::Disparity tuning of visual cells in the brain depends on the structure of their binocular receptive fields (RFs). Freeman and coworkers have found that binocular RFs of a typical simple cell can be quantitatively described by two Gabor functions with the same gaussian envelope but different phase parameters in the sin...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.1996.8.8.1611

    authors: Zhu YD,Qian N

    更新日期:1996-11-15 00:00:00

  • Irregular firing of isolated cortical interneurons in vitro driven by intrinsic stochastic mechanisms.

    abstract::Pharmacologically isolated GABAergic irregular spiking and stuttering interneurons in the mouse visual cortex display highly irregular spike times, with high coefficients of variation approximately 0.9-3, in response to a depolarizing, constant current input. This is in marked contrast to cortical pyramidal cells, whi...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2008.20.1.44

    authors: Englitz B,Stiefel KM,Sejnowski TJ

    更新日期:2008-01-01 00:00:00

  • STDP-Compatible Approximation of Backpropagation in an Energy-Based Model.

    abstract::We show that Langevin Markov chain Monte Carlo inference in an energy-based model with latent variables has the property that the early steps of inference, starting from a stationary point, correspond to propagating error gradients into internal layers, similar to backpropagation. The backpropagated error is with resp...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00934

    authors: Bengio Y,Mesnard T,Fischer A,Zhang S,Wu Y

    更新日期:2017-03-01 00:00:00

  • Computation in a single neuron: Hodgkin and Huxley revisited.

    abstract::A spiking neuron "computes" by transforming a complex dynamical input into a train of action potentials, or spikes. The computation performed by the neuron can be formulated as dimensional reduction, or feature detection, followed by a nonlinear decision function over the low-dimensional space. Generalizations of the ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660360675017

    authors: Agüera y Arcas B,Fairhall AL,Bialek W

    更新日期:2003-08-01 00:00:00

  • Changes in GABAB modulation during a theta cycle may be analogous to the fall of temperature during annealing.

    abstract::Changes in GABA modulation may underlie experimentally observed changes in the strength of synaptic transmission at different phases of the theta rhythm (Wyble, Linster, & Hasselmo, 1997). Analysis demonstrates that these changes improve sequence disambiguation by a neural network model of CA3. We show that in the fra...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976698300017539

    authors: Sohal VS,Hasselmo ME

    更新日期:1998-05-15 00:00:00

  • Some sampling properties of common phase estimators.

    abstract::The instantaneous phase of neural rhythms is important to many neuroscience-related studies. In this letter, we show that the statistical sampling properties of three instantaneous phase estimators commonly employed to analyze neuroscience data share common features, allowing an analytical investigation into their beh...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00422

    authors: Lepage KQ,Kramer MA,Eden UT

    更新日期:2013-04-01 00:00:00

  • Bias/Variance Decompositions for Likelihood-Based Estimators.

    abstract::The bias/variance decomposition of mean-squared error is well understood and relatively straightforward. In this note, a similar simple decomposition is derived, valid for any kind of error measure that, when using the appropriate probability model, can be derived from a Kullback-Leibler divergence or log-likelihood. ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976698300017232

    authors: Heskes T

    更新日期:1998-07-28 00:00:00

  • Reinforcement learning in continuous time and space.

    abstract::This article presents a reinforcement learning framework for continuous-time dynamical systems without a priori discretization of time, state, and action. Based on the Hamilton-Jacobi-Bellman (HJB) equation for infinite-horizon, discounted reward problems, we derive algorithms for estimating value functions and improv...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300015961

    authors: Doya K

    更新日期:2000-01-01 00:00:00

  • Modeling sensorimotor learning with linear dynamical systems.

    abstract::Recent studies have employed simple linear dynamical systems to model trial-by-trial dynamics in various sensorimotor learning tasks. Here we explore the theoretical and practical considerations that arise when employing the general class of linear dynamical systems (LDS) as a model for sensorimotor learning. In this ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976606775774651

    authors: Cheng S,Sabes PN

    更新日期:2006-04-01 00:00:00

  • Employing the zeta-transform to optimize the calculation of the synaptic conductance of NMDA and other synaptic channels in network simulations.

    abstract::Calculation of the total conductance change induced by multiple synapses at a given membrane compartment remains one of the most time-consuming processes in biophysically realistic neural network simulations. Here we show that this calculation can be achieved in a highly efficient way even for multiply converging syna...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976698300017061

    authors: Köhn J,Wörgötter F

    更新日期:1998-10-01 00:00:00

  • Abstract stimulus-specific adaptation models.

    abstract::Many neurons that initially respond to a stimulus stop responding if the stimulus is presented repeatedly but recover their response if a different stimulus is presented. This phenomenon is referred to as stimulus-specific adaptation (SSA). SSA has been investigated extensively using oddball experiments, which measure...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00077

    authors: Mill R,Coath M,Wennekers T,Denham SL

    更新日期:2011-02-01 00:00:00

  • MISEP method for postnonlinear blind source separation.

    abstract::In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtu...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.9.2557

    authors: Zheng CH,Huang DS,Li K,Irwin G,Sun ZL

    更新日期:2007-09-01 00:00:00

  • Nonlinear complex-valued extensions of Hebbian learning: an essay.

    abstract::The Hebbian paradigm is perhaps the best-known unsupervised learning theory in connectionism. It has inspired wide research activity in the artificial neural network field because it embodies some interesting properties such as locality and the capability of being applicable to the basic weight-and-sum structure of ne...

    journal_title:Neural computation

    pub_type: 杂志文章,评审

    doi:10.1162/0899766053429381

    authors: Fiori S

    更新日期:2005-04-01 00:00:00

  • Neural associative memory with optimal Bayesian learning.

    abstract::Neural associative memories are perceptron-like single-layer networks with fast synaptic learning typically storing discrete associations between pairs of neural activity patterns. Previous work optimized the memory capacity for various models of synaptic learning: linear Hopfield-type rules, the Willshaw model employ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00127

    authors: Knoblauch A

    更新日期:2011-06-01 00:00:00

  • A unifying view of wiener and volterra theory and polynomial kernel regression.

    abstract::Volterra and Wiener series are perhaps the best-understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2006.18.12.3097

    authors: Franz MO,Schölkopf B

    更新日期:2006-12-01 00:00:00

  • Multiple model-based reinforcement learning.

    abstract::We propose a modular reinforcement learning architecture for nonlinear, nonstationary control tasks, which we call multiple model-based reinforcement learning (MMRL). The basic idea is to decompose a complex task into multiple domains in space and time based on the predictability of the environmental dynamics. The sys...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602753712972

    authors: Doya K,Samejima K,Katagiri K,Kawato M

    更新日期:2002-06-01 00:00:00

  • Generalization and selection of examples in feedforward neural networks.

    abstract::In this work, we study how the selection of examples affects the learning procedure in a boolean neural network and its relationship with the complexity of the function under study and its architecture. We analyze the generalization capacity for different target functions with particular architectures through an analy...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300014999

    authors: Franco L,Cannas SA

    更新日期:2000-10-01 00:00:00

  • The number of synaptic inputs and the synchrony of large, sparse neuronal networks.

    abstract::The prevalence of coherent oscillations in various frequency ranges in the central nervous system raises the question of the mechanisms that synchronize large populations of neurons. We study synchronization in models of large networks of spiking neurons with random sparse connectivity. Synchrony occurs only when the ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976600300015529

    authors: Golomb D,Hansel D

    更新日期:2000-05-01 00:00:00

  • Investigating the fault tolerance of neural networks.

    abstract::Particular levels of partial fault tolerance (PFT) in feedforward artificial neural networks of a given size can be obtained by redundancy (replicating a smaller normally trained network), by design (training specifically to increase PFT), and by a combination of the two (replicating a smaller PFT-trained network). Th...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/0899766053723096

    authors: Tchernev EB,Mulvaney RG,Phatak DS

    更新日期:2005-07-01 00:00:00

  • Dynamics of learning near singularities in layered networks.

    abstract::We explicitly analyze the trajectories of learning near singularities in hierarchical networks, such as multilayer perceptrons and radial basis function networks, which include permutation symmetry of hidden nodes, and show their general properties. Such symmetry induces singularities in their parameter space, where t...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco.2007.12-06-414

    authors: Wei H,Zhang J,Cousseau F,Ozeki T,Amari S

    更新日期:2008-03-01 00:00:00

  • Methods for Assessment of Memory Reactivation.

    abstract::It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01090

    authors: Liu S,Grosmark AD,Chen Z

    更新日期:2018-08-01 00:00:00