Robust boosting algorithm against mislabeling in multiclass problems.

Abstract:

:We discuss robustness against mislabeling in multiclass labels for classification problems and propose two algorithms of boosting, the normalized Eta-Boost.M and Eta-Boost.M, based on the Eta-divergence. Those two boosting algorithms are closely related to models of mislabeling in which the label is erroneously exchanged for others. For the two boosting algorithms, theoretical aspects supporting the robustness for mislabeling are explored. We apply the proposed two boosting methods for synthetic and real data sets to investigate the performance of these methods, focusing on robustness, and confirm the validity of the proposed methods.

journal_name

Neural Comput

journal_title

Neural computation

authors

Takenouchi T,Eguchi S,Murata N,Kanamori T

doi

10.1162/neco.2007.11-06-400

subject

Has Abstract

pub_date

2008-06-01 00:00:00

pages

1596-630

issue

6

eissn

0899-7667

issn

1530-888X

journal_volume

20

pub_type

信件
  • Neural integrator: a sandpile model.

    abstract::We investigated a model for the neural integrator based on hysteretic units connected by positive feedback. Hysteresis is assumed to emerge from the intrinsic properties of the cells. We consider the recurrent networks containing either bistable or multistable neurons. We apply our analysis to the oculomotor velocity-...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2008.12-06-416

    authors: Nikitchenko M,Koulakov A

    更新日期:2008-10-01 00:00:00

  • A semiparametric Bayesian model for detecting synchrony among multiple neurons.

    abstract::We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their cofiring (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1s (spike) and 0s (silence) for each neuron ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00631

    authors: Shahbaba B,Zhou B,Lan S,Ombao H,Moorman D,Behseta S

    更新日期:2014-09-01 00:00:00

  • MISEP method for postnonlinear blind source separation.

    abstract::In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtu...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2007.19.9.2557

    authors: Zheng CH,Huang DS,Li K,Irwin G,Sun ZL

    更新日期:2007-09-01 00:00:00

  • Nonlinear Time&hyphenSeries Prediction with Missing and Noisy Data

    abstract::We derive solutions for the problem of missing and noisy data in nonlinear time&hyphenseries prediction from a probabilistic point of view. We discuss different approximations to the solutions &hyphen in particular, approximations that require either stochastic simulation or the substitution of a single estimate for t...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976698300017728

    authors: Tresp V V,Hofmann R

    更新日期:1998-03-23 00:00:00

  • Abstract stimulus-specific adaptation models.

    abstract::Many neurons that initially respond to a stimulus stop responding if the stimulus is presented repeatedly but recover their response if a different stimulus is presented. This phenomenon is referred to as stimulus-specific adaptation (SSA). SSA has been investigated extensively using oddball experiments, which measure...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00077

    authors: Mill R,Coath M,Wennekers T,Denham SL

    更新日期:2011-02-01 00:00:00

  • Modeling short-term synaptic depression in silicon.

    abstract::We describe a model of short-term synaptic depression that is derived from a circuit implementation. The dynamics of this circuit model is similar to the dynamics of some theoretical models of short-term depression except that the recovery dynamics of the variable describing the depression is nonlinear and it also dep...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976603762552942

    authors: Boegerhausen M,Suter P,Liu SC

    更新日期:2003-02-01 00:00:00

  • Positive Neural Networks in Discrete Time Implement Monotone-Regular Behaviors.

    abstract::We study the expressive power of positive neural networks. The model uses positive connection weights and multiple input neurons. Different behaviors can be expressed by varying the connection weights. We show that in discrete time and in the absence of noise, the class of positive neural networks captures the so-call...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00789

    authors: Ameloot TJ,Van den Bussche J

    更新日期:2015-12-01 00:00:00

  • Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus laevis.

    abstract::A minimal model is presented to explain changes in frequency, shape, and amplitude of Ca2+ oscillations in the neuroendocrine melanotrope cell of Xenopus Laevis. It describes the cell as a plasma membrane oscillator with influx of extracellular Ca2+ via voltage-gated Ca2+ channels in the plasma membrane. The Ca2+ osci...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601300014655

    authors: Cornelisse LN,Scheenen WJ,Koopman WJ,Roubos EW,Gielen SC

    更新日期:2001-01-01 00:00:00

  • Kernels for longitudinal data with variable sequence length and sampling intervals.

    abstract::We develop several kernel methods for classification of longitudinal data and apply them to detect cognitive decline in the elderly. We first develop mixed-effects models, a type of hierarchical empirical Bayes generative models, for the time series. After demonstrating their utility in likelihood ratio classifiers (a...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00164

    authors: Lu Z,Leen TK,Kaye J

    更新日期:2011-09-01 00:00:00

  • Cortical spatiotemporal dimensionality reduction for visual grouping.

    abstract::The visual systems of many mammals, including humans, are able to integrate the geometric information of visual stimuli and perform cognitive tasks at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at the single cell level ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00738

    authors: Cocci G,Barbieri D,Citti G,Sarti A

    更新日期:2015-06-01 00:00:00

  • Optimal approximation of signal priors.

    abstract::In signal restoration by Bayesian inference, one typically uses a parametric model of the prior distribution of the signal. Here, we consider how the parameters of a prior model should be estimated from observations of uncorrupted signals. A lot of recent work has implicitly assumed that maximum likelihood estimation ...

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/neco.2008.10-06-384

    authors: Hyvärinen A

    更新日期:2008-12-01 00:00:00

  • Inhibition and Excitation Shape Activity Selection: Effect of Oscillations in a Decision-Making Circuit.

    abstract::Decision making is a complex task, and its underlying mechanisms that regulate behavior, such as the implementation of the coupling between physiological states and neural networks, are hard to decipher. To gain more insight into neural computations underlying ongoing binary decision-making tasks, we consider a neural...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01185

    authors: Bose T,Reina A,Marshall JAR

    更新日期:2019-05-01 00:00:00

  • A neural-network-based approach to the double traveling salesman problem.

    abstract::The double traveling salesman problem is a variation of the basic traveling salesman problem where targets can be reached by two salespersons operating in parallel. The real problem addressed by this work concerns the optimization of the harvest sequence for the two independent arms of a fruit-harvesting robot. This a...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660252741194

    authors: Plebe A,Anile AM

    更新日期:2002-02-01 00:00:00

  • Generalization and multirate models of motor adaptation.

    abstract::When subjects adapt their reaching movements in the setting of a systematic force or visual perturbation, generalization of adaptation can be assessed psychophysically in two ways: by testing untrained locations in the work space at the end of adaptation (slow postadaptation generalization) or by determining the influ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00262

    authors: Tanaka H,Krakauer JW,Sejnowski TJ

    更新日期:2012-04-01 00:00:00

  • Traveling waves of excitation in neural field models: equivalence of rate descriptions and integrate-and-fire dynamics.

    abstract::Field models provide an elegant mathematical framework to analyze large-scale patterns of neural activity. On the microscopic level, these models are usually based on either a firing-rate picture or integrate-and-fire dynamics. This article shows that in spite of the large conceptual differences between the two types ...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/08997660260028656

    authors: Cremers D,Herz AV

    更新日期:2002-07-01 00:00:00

  • Machine Learning: Deepest Learning as Statistical Data Assimilation Problems.

    abstract::We formulate an equivalence between machine learning and the formulation of statistical data assimilation as used widely in physical and biological sciences. The correspondence is that layer number in a feedforward artificial network setting is the analog of time in the data assimilation setting. This connection has b...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01094

    authors: Abarbanel HDI,Rozdeba PJ,Shirman S

    更新日期:2018-08-01 00:00:00

  • Capturing the Dynamical Repertoire of Single Neurons with Generalized Linear Models.

    abstract::A key problem in computational neuroscience is to find simple, tractable models that are nevertheless flexible enough to capture the response properties of real neurons. Here we examine the capabilities of recurrent point process models known as Poisson generalized linear models (GLMs). These models are defined by a s...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01021

    authors: Weber AI,Pillow JW

    更新日期:2017-12-01 00:00:00

  • Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.

    abstract::Spiking neural networks (SNNs) with the event-driven manner of transmitting spikes consume ultra-low power on neuromorphic chips. However, training deep SNNs is still challenging compared to convolutional neural networks (CNNs). The SNN training algorithms have not achieved the same performance as CNNs. In this letter...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco_a_01319

    authors: Chen R,Li L

    更新日期:2020-12-01 00:00:00

  • Scalable hybrid computation with spikes.

    abstract::We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moder...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602320263971

    authors: Sarpeshkar R,O'Halloran M

    更新日期:2002-09-01 00:00:00

  • Accelerated spike resampling for accurate multiple testing controls.

    abstract::Controlling for multiple hypothesis tests using standard spike resampling techniques often requires prohibitive amounts of computation. Importance sampling techniques can be used to accelerate the computation. The general theory is presented, along with specific examples for testing differences across conditions using...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00399

    authors: Harrison MT

    更新日期:2013-02-01 00:00:00

  • Nonlinear complex-valued extensions of Hebbian learning: an essay.

    abstract::The Hebbian paradigm is perhaps the best-known unsupervised learning theory in connectionism. It has inspired wide research activity in the artificial neural network field because it embodies some interesting properties such as locality and the capability of being applicable to the basic weight-and-sum structure of ne...

    journal_title:Neural computation

    pub_type: 杂志文章,评审

    doi:10.1162/0899766053429381

    authors: Fiori S

    更新日期:2005-04-01 00:00:00

  • Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity.

    abstract::Ramping neuronal activity refers to spiking activity with a rate that increases quasi-linearly over time. It has been observed in multiple cortical areas and is correlated with evidence accumulation processes or timing. In this work, we investigated the downstream effect of ramping neuronal activity through synapses t...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00818

    authors: Wei W,Wang XJ

    更新日期:2016-04-01 00:00:00

  • Metabolically efficient information processing.

    abstract::Energy-efficient information transmission may be relevant to biological sensory signal processing as well as to low-power electronic devices. We explore its consequences in two different regimes. In an "immediate" regime, we argue that the information rate should be maximized subject to a power constraint, and in an "...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976601300014358

    authors: Balasubramanian V,Kimber D,Berry MJ 2nd

    更新日期:2001-04-01 00:00:00

  • A graphical model framework for decoding in the visual ERP-based BCI speller.

    abstract::We present a graphical model framework for decoding in the visual ERP-based speller system. The proposed framework allows researchers to build generative models from which the decoding rules are obtained in a straightforward manner. We suggest two models for generating brain signals conditioned on the stimulus events....

    journal_title:Neural computation

    pub_type: 信件

    doi:10.1162/NECO_a_00066

    authors: Martens SM,Mooij JM,Hill NJ,Farquhar J,Schölkopf B

    更新日期:2011-01-01 00:00:00

  • Analysis of cluttered scenes using an elastic matching approach for stereo images.

    abstract::We present a system for the automatic interpretation of cluttered scenes containing multiple partly occluded objects in front of unknown, complex backgrounds. The system is based on an extended elastic graph matching algorithm that allows the explicit modeling of partial occlusions. Our approach extends an earlier sys...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2006.18.6.1441

    authors: Eckes C,Triesch J,von der Malsburg C

    更新日期:2006-06-01 00:00:00

  • An amplitude equation approach to contextual effects in visual cortex.

    abstract::A mathematical theory of interacting hypercolumns in primary visual cortex (V1) is presented that incorporates details concerning the anisotropic nature of long-range lateral connections. Each hypercolumn is modeled as a ring of interacting excitatory and inhibitory neural populations with orientation preferences over...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/089976602317250870

    authors: Bressloff PC,Cowan JD

    更新日期:2002-03-01 00:00:00

  • Sufficient dimension reduction via squared-loss mutual information estimation.

    abstract::The goal of sufficient dimension reduction in supervised learning is to find the low-dimensional subspace of input features that contains all of the information about the output values that the input features possess. In this letter, we propose a novel sufficient dimension-reduction method using a squared-loss variant...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/NECO_a_00407

    authors: Suzuki T,Sugiyama M

    更新日期:2013-03-01 00:00:00

  • A first-order nonhomogeneous Markov model for the response of spiking neurons stimulated by small phase-continuous signals.

    abstract::We present a first-order nonhomogeneous Markov model for the interspike-interval density of a continuously stimulated spiking neuron. The model allows the conditional interspike-interval density and the stationary interspike-interval density to be expressed as products of two separate functions, one of which describes...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.06-07-548

    authors: Tapson J,Jin C,van Schaik A,Etienne-Cummings R

    更新日期:2009-06-01 00:00:00

  • Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.

    abstract::Learning in a neuronal network is often thought of as a linear superposition of synaptic modifications induced by individual stimuli. However, since biological synapses are naturally bounded, a linear superposition would cause fast forgetting of previously acquired memories. Here we show that this forgetting can be av...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/0899766054615644

    authors: Senn W,Fusi S

    更新日期:2005-10-01 00:00:00

  • Feature selection in simple neurons: how coding depends on spiking dynamics.

    abstract::The relationship between a neuron's complex inputs and its spiking output defines the neuron's coding strategy. This is frequently and effectively modeled phenomenologically by one or more linear filters that extract the components of the stimulus that are relevant for triggering spikes and a nonlinear function that r...

    journal_title:Neural computation

    pub_type: 杂志文章

    doi:10.1162/neco.2009.02-09-956

    authors: Famulare M,Fairhall A

    更新日期:2010-03-01 00:00:00