Engineering Escherichia coli into a protein delivery system for mammalian cells.

Abstract:

:Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Reeves AZ,Spears WE,Du J,Tan KY,Wagers AJ,Lesser CF

doi

10.1021/acssynbio.5b00002

subject

Has Abstract

pub_date

2015-05-15 00:00:00

pages

644-54

issue

5

issn

2161-5063

journal_volume

4

pub_type

杂志文章
  • Development of High-Performance Whole Cell Biosensors Aided by Statistical Modeling.

    abstract::Whole cell biosensors are genetic systems that link the presence of a chemical, or other stimulus, to a user-defined gene expression output for applications in sensing and control. However, the gene expression level of biosensor regulatory components required for optimal performance is nonintuitive, and classical iter...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00448

    authors: Berepiki A,Kent R,Machado LFM,Dixon N

    更新日期:2020-03-20 00:00:00

  • Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors.

    abstract::As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutation...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400205x

    authors: Diensthuber RP,Engelhard C,Lemke N,Gleichmann T,Ohlendorf R,Bittl R,Möglich A

    更新日期:2014-11-21 00:00:00

  • Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis.

    abstract::A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00254

    authors: Duran-Nebreda S,Solé RV

    更新日期:2016-07-15 00:00:00

  • Efficient and Precise Genome Editing in Shewanella with Recombineering and CRISPR/Cas9-Mediated Counter-Selection.

    abstract::Dissimilatory metal-reducing bacteria, particularly those from the genus Shewanella, are of importance for bioremediation of metal contaminated sites and sustainable energy production. However, studies on this species have suffered from a lack of effective genetic tools for precise and high throughput genome manipulat...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00188

    authors: Corts AD,Thomason LC,Gill RT,Gralnick JA

    更新日期:2019-08-16 00:00:00

  • Rational Design of the N-Terminal Coding Sequence for Regulating Enzyme Expression in Bacillus subtilis.

    abstract::Synonymous mutation of the N-terminal coding sequence (NCS) has been used to regulate gene expression. We here developed a statistical model to predict the effect of the NCSs on protein expression in Bacillus subtilis WB600. First, a synonymous mutation was performed within the first 10 residues of a superfolder green...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00309

    authors: Xu K,Tong Y,Li Y,Tao J,Li J,Zhou J,Liu S

    更新日期:2021-01-19 00:00:00

  • Self-Assembling RNA Nanoparticle for Gene Expression Regulation in a Model System.

    abstract::In the search for enzymatically processed RNA fragments, we found the novel three-way junction motif. The structure prediction suggested the arrangement of helices at acute angle approx. 60°. This allows the design of a trimeric RNA nanoparticle that can be functionalized with multiple regulatory fragments. Such RNA n...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00319

    authors: Jedrzejczyk D,Chworos A

    更新日期:2019-03-15 00:00:00

  • The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

    abstract::Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00204

    authors: Morrell WC,Birkel GW,Forrer M,Lopez T,Backman TWH,Dussault M,Petzold CJ,Baidoo EEK,Costello Z,Ando D,Alonso-Gutierrez J,George KW,Mukhopadhyay A,Vaino I,Keasling JD,Adams PD,Hillson NJ,Garcia Martin H

    更新日期:2017-12-15 00:00:00

  • A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks.

    abstract::There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synth...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00469

    authors: VanArsdale E,Hörnström D,Sjöberg G,Järbur I,Pitzer J,Payne GF,van Maris AJA,Bentley WE

    更新日期:2020-05-15 00:00:00

  • Design and Selection of a Synthetic Feedback Loop for Optimizing Biofuel Tolerance.

    abstract::Feedback control allows cells to dynamically sense and respond to environmental changes. However, synthetic controller designs can be challenging because of implementation issues, such as determining optimal expression levels for circuit components within a feedback loop. Here, we addressed this by coupling rational d...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00260

    authors: Siu Y,Fenno J,Lindle JM,Dunlop MJ

    更新日期:2018-01-19 00:00:00

  • Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay.

    abstract::In order to match our ability to conceive of and construct cells with enhanced function, we must concomitantly develop facile, real-time methods for elucidating performance. With these, new designs can be tested in silico and steps in construction incrementally validated. Electrochemical monitoring offers the above ad...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00073

    authors: Tschirhart T,Zhou XY,Ueda H,Tsao CY,Kim E,Payne GF,Bentley WE

    更新日期:2016-01-15 00:00:00

  • Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    abstract::Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00211

    authors: Chomvong K,Lin E,Blaisse M,Gillespie AE,Cate JH

    更新日期:2017-02-17 00:00:00

  • A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria.

    abstract::Engineered bacteria promise to revolutionize diagnostics and therapeutics, yet many applications are precluded by the limited number of detectable signals. Here we present a general framework to engineer synthetic receptors enabling bacterial cells to respond to novel ligands. These receptors are activated via ligand-...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00266

    authors: Chang HJ,Mayonove P,Zavala A,De Visch A,Minard P,Cohen-Gonsaud M,Bonnet J

    更新日期:2018-01-19 00:00:00

  • A Modular High-Throughput In Vivo Screening Platform Based on Chimeric Bacterial Receptors.

    abstract::Multidrug resistance (MDR) is a globally relevant problem that requires novel approaches. Two-component systems are a promising, yet untapped target for novel antibacterials. They are prevalent in bacteria and absent in mammals, and their activity can be modulated upon perception of various stimuli. Screening pre-exis...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00288

    authors: Lehning CE,Heidelberger JB,Reinhard J,Nørholm MHH,Draheim RR

    更新日期:2017-07-21 00:00:00

  • An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    abstract::The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved fo...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00366

    authors: Natarajan A,Haitjema CH,Lee R,Boock JT,DeLisa MP

    更新日期:2017-05-19 00:00:00

  • Semirational Approach for Ultrahigh Poly(3-hydroxybutyrate) Accumulation in Escherichia coli by Combining One-Step Library Construction and High-Throughput Screening.

    abstract::As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00083

    authors: Li T,Ye J,Shen R,Zong Y,Zhao X,Lou C,Chen GQ

    更新日期:2016-11-18 00:00:00

  • In-Silico Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium.

    abstract::Living organisms employ endogenous negative feedback loops to maintain homeostasis despite environmental fluctuations. A pressing open challenge in Synthetic Biology is to design and implement synthetic circuits to control host cells' behavior, in order to regulate and maintain desired conditions. To cope with the hig...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00220

    authors: Fiore G,Matyjaszkiewicz A,Annunziata F,Grierson C,Savery NJ,Marucci L,di Bernardo M

    更新日期:2017-03-17 00:00:00

  • Transcription activator-like effectors: a toolkit for synthetic biology.

    abstract::Transcription activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria to aid the infection of plant species. TALEs assist infections by binding to specific DNA sequences and activating the expression of host genes. Recent results show that TALE proteins consist of a central repeat domain, which ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章,评审

    doi:10.1021/sb400137b

    authors: Moore R,Chandrahas A,Bleris L

    更新日期:2014-10-17 00:00:00

  • Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    abstract::Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00040

    authors: Agrawal DK,Tang X,Westbrook A,Marshall R,Maxwell CS,Lucks J,Noireaux V,Beisel CL,Dunlop MJ,Franco E

    更新日期:2018-05-18 00:00:00

  • "Site and Mutation"-Specific Predictions Enable Minimal Directed Evolution Libraries.

    abstract::Directed evolution experiments designed to improve the activity of a biocatalyst have increased in sophistication from the early days of completely random mutagenesis. Sequence-based and structure-based methods have been developed to identify "hotspot" positions that when randomized provide a higher frequency of benef...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00359

    authors: Moore JC,Rodriguez-Granillo A,Crespo A,Govindarajan S,Welch M,Hiraga K,Lexa K,Marshall N,Truppo MD

    更新日期:2018-07-20 00:00:00

  • Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals.

    abstract::Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400156v

    authors: Zingaro KA,Nicolaou SA,Yuan Y,Papoutsakis ET

    更新日期:2014-07-18 00:00:00

  • Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli.

    abstract::Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb5003136

    authors: Liu J,Zhu X,Seipke RF,Zhang W

    更新日期:2015-05-15 00:00:00

  • Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.

    abstract::Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA media...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400051t

    authors: Li Y,Gu Q,Lin Z,Wang Z,Chen T,Zhao X

    更新日期:2013-11-15 00:00:00

  • An Artificial Yeast Genetic Circuit Enables Deep Mutational Scanning of an Antimicrobial Resistance Protein.

    abstract::Understanding the molecular mechanisms underlying antibiotic resistance requires concerted efforts in enzymology and medicinal chemistry. Here we describe a new synthetic biology approach to antibiotic development, where the presence of tetracycline antibiotics is linked to a life-death selection in Saccharomyces cere...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00121

    authors: Scott LH,Mathews JC,Flematti GR,Filipovska A,Rackham O

    更新日期:2018-08-17 00:00:00

  • Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials.

    abstract::Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00448

    authors: Charrier M,Li D,Mann VR,Yun L,Jani S,Rad B,Cohen BE,Ashby PD,Ryan KR,Ajo-Franklin CM

    更新日期:2019-01-18 00:00:00

  • Exploring Chemical Biosynthetic Design Space with Transform-MinER.

    abstract::Transform-MinER (Transforming Molecules in Enzyme Reactions) is a web application facilitating the exploration of chemical biosynthetic space, guiding the user toward promising start points for enzyme design projects or directed evolution experiments. Two types of search are possible: Molecule Search allows a user to ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00105

    authors: Tyzack JD,Ribeiro AJM,Borkakoti N,Thornton JM

    更新日期:2019-11-15 00:00:00

  • Engineered Bacterial Production of Volatile Methyl Salicylate.

    abstract::The engineering of microbial metabolic pathways over the last two decades has led to numerous examples of cell factories used for the production of small molecules. These molecules have an array of utility in commercial industries and as in situ expressed biomarkers or therapeutics in microbial applications. While mos...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00497

    authors: Chien T,Jones DR,Danino T

    更新日期:2021-01-15 00:00:00

  • Biosynthetic Routes for Producing Various Fucosyl-Oligosaccharides.

    abstract::Fucosyl-oligosaccharides (FOSs) play physiologically important roles as prebiotics, neuronal growth factors, and inhibitors of enteropathogens. However, challenges in designed synthesis and mass production of FOSs hamper their industrial applications. Here, we report flexible biosynthetic routes to produce various FOS...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00436

    authors: Yun EJ,Liu JJ,Lee JW,Kwak S,Yu S,Kim KH,Jin YS

    更新日期:2019-02-15 00:00:00

  • Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly.

    abstract::Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00333

    authors: Potapov V,Ong JL,Kucera RB,Langhorst BW,Bilotti K,Pryor JM,Cantor EJ,Canton B,Knight TF,Evans TC Jr,Lohman GJS

    更新日期:2018-11-16 00:00:00

  • An AND-Gated Drug and Photoactivatable Cre-loxP System for Spatiotemporal Control in Cell-Based Therapeutics.

    abstract::While engineered chimeric antigen receptor (CAR) T cells have shown promise in detecting and eradicating cancer cells within patients, it remains difficult to identify a set of truly cancer-specific CAR-targeting cell surface antigens to prevent potentially fatal on-target off-tumor toxicity against other healthy tiss...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00175

    authors: Allen ME,Zhou W,Thangaraj J,Kyriakakis P,Wu Y,Huang Z,Ho P,Pan Y,Limsakul P,Xu X,Wang Y

    更新日期:2019-10-18 00:00:00

  • A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in Saccharomyces cerevisiae.

    abstract::Combinatorial metabolic engineering has been widely established for the development of efficient microbial cell factories to produce the products of interest by precisely regulating the expression levels of multiple genes simultaneously. Here, we report a novel multifunctional CRISPR system that enables simultaneous g...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00218

    authors: Dong C,Jiang L,Xu S,Huang L,Cai J,Lian J,Xu Z

    更新日期:2020-09-18 00:00:00