Keratinocyte-derived vascular endothelial growth factor biosynthesis represents a pleiotropic side effect of peroxisome proliferator-activated receptor-gamma agonist troglitazone but not rosiglitazone and involves activation of p38 mitogen-activated prote

Abstract:

:The peroxisome proliferator-activated receptors (PPARs) represent pharmacological target molecules to improve insulin resistance in type 2 diabetes mellitus. Here we assessed a functional connection between pharmacological activation of PPAR and vascular endothelial growth factor (VEGF) expression in keratinocytes and during diabetes-impaired acute skin repair in obese/obese (ob/ob) mice. PPARbeta/delta agonist 4-[3-[4-acetyl-3-hydroxy-2-propylphenoxy)propoxy]phenoxy]acetic acid (L165,041) and PPARgamma agonists ciglitazone and troglitazone, but not rosiglitazone, potently induced VEGF mRNA and protein expression from cultured keratinocytes. Inhibitor studies revealed a strong functional dependence of troglitazone- and L165,041-induced VEGF expression on p38 and p42/44 mitogen-activated protein kinase (MAPK) activation in keratinocytes. Rosiglitazone also induced activation of p38 MAPK but failed to mediate the activation of p42/44 MAPK in the cells. Functional ablation of PPARbeta/delta and PPARgamma from keratinocytes by small interfering RNA did not abrogate L165,041- and troglitazone-induced VEGF biosynthesis and suggested VEGF induction as a pleiotropic, PPAR-independent effect of both drugs in the cells. In accordance with the in vitro situation, we found activated p38 MAPK in wound keratinocytes from acute wounds of rosiglitazone- and troglitazone-treated diabetic obese/obese mice, whereas keratinocyte-specific VEGF protein signals were only prominent upon troglitazone treatment. In summary, our data from cell culture and wound healing experiments suggested p38 MAPK activation as a side effect of thiazolidinediones; however, only troglitazone, but not rosiglitazone, seemed to translate p38 MAPK activation into a PPARgamma-independent induction of VEGF from keratinocytes.

journal_name

Mol Pharmacol

journal_title

Molecular pharmacology

authors

Schiefelbein D,Seitz O,Goren I,Dissmann JP,Schmidt H,Bachmann M,Sader R,Geisslinger G,Pfeilschifter J,Frank S

doi

10.1124/mol.108.049395

subject

Has Abstract

pub_date

2008-10-01 00:00:00

pages

952-63

issue

4

eissn

0026-895X

issn

1521-0111

pii

mol.108.049395

journal_volume

74

pub_type

杂志文章