Differential modulation of CaV2.3 Ca2+ channels by Galphaq/11-coupled muscarinic receptors.

Abstract:

:CaV2.3 subunits are expressed in neuronal and neuroendocrine cells where they are believed to form native R-type Ca2+ channels. Although R-type currents are involved in triggering neurotransmitter and hormone secretion, little is known about their modulation. Previous studies have shown that muscarinic acetylcholine receptors evoke both inhibition and stimulation of CaV2.3. Muscarinic inhibition of CaV2.3 is mediated by Gbetagamma subunits, whereas stimulation is mediated by pertussis toxin-insensitive Galpha subunits. In the present study, we compared modulation of CaV2.3 by the three Galphaq/11-coupled muscarinic receptors (M1, M3, and M5). Our data indicate that these receptors trigger comparable stimulation of CaV2.3. The signaling pathway that mediates stimulation was meticulously analyzed for M1 receptors. Stimulation is blocked by neutralizing antibodies directed against Galphaq/11, coexpression of the regulatory domain of protein kinase Cdelta (PKCdelta), preactivating PKC with phorbol ester, or pharmacological suppression of PKC with bisindolylmaleimide I. Stimulation of CaV2.3 is Ca(2+)-independent and insensitive to 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö 6976), a specific inhibitor of Ca(2+)-dependent PKC isozymes. These results indicate that muscarinic stimulation of CaV2.3 involves signaling by Galphaq/11, diacylglycerol, and a Ca(2+)-independent PKC. In contrast to stimulation, the magnitude of CaV2.3 inhibition depended on receptor subtype, with M3 and M5 receptors producing much larger CaV2.3 inhibition than M1 receptors. Interestingly, muscarinic inhibition of CaV2.3 was notably enhanced during pharmacological suppression of PKC, suggesting the presence of cross-talk between Gbetagamma-mediated inhibition and PKC-mediated stimulation of R-type channels similar to that described previously for N-type channels.

journal_name

Mol Pharmacol

journal_title

Molecular pharmacology

authors

Bannister RA,Melliti K,Adams BA

doi

10.1124/mol.65.2.381

keywords:

subject

Has Abstract

pub_date

2004-02-01 00:00:00

pages

381-8

issue

2

eissn

0026-895X

issn

1521-0111

pii

65/2/381

journal_volume

65

pub_type

杂志文章