Cellular senescence as a potential mediator of COVID-19 severity in the elderly.

Abstract:

:SARS-CoV-2 is a novel betacoronavirus which infects the lower respiratory tract and can cause coronavirus disease 2019 (COVID-19), a complex respiratory distress syndrome. Epidemiological data show that COVID-19 has a rising mortality particularly in individuals with advanced age. Identifying a functional association between SARS-CoV-2 infection and the process of biological aging may provide a tractable avenue for therapy to prevent acute and long-term disease. Here, we discuss how cellular senescence-a state of stable growth arrest characterized by pro-inflammatory and pro-disease functions-can hypothetically be a contributor to COVID-19 pathogenesis, and a potential pharmaceutical target to alleviate disease severity. First, we define why older COVID-19 patients are more likely to accumulate high levels of cellular senescence. Second, we describe how senescent cells can contribute to an uncontrolled SARS-CoV-2-mediated cytokine storm and an excessive inflammatory reaction during the early phase of the disease. Third, we discuss the various mechanisms by which senescent cells promote tissue damage leading to lung failure and multi-tissue dysfunctions. Fourth, we argue that a high senescence burst might negatively impact on vaccine efficacy. Measuring the burst of cellular senescence could hypothetically serve as a predictor of COVID-19 severity, and targeting senescence-associated mechanisms prior and after SARS-CoV-2 infection might have the potential to limit a number of severe damages and to improve the efficacy of vaccinations.

journal_name

Aging Cell

journal_title

Aging cell

authors

Nehme J,Borghesan M,Mackedenski S,Bird TG,Demaria M

doi

10.1111/acel.13237

subject

Has Abstract

pub_date

2020-10-01 00:00:00

pages

e13237

issue

10

eissn

1474-9718

issn

1474-9726

journal_volume

19

pub_type

杂志文章,评审
  • Neuropeptide Y resists excess loss of fat by lipolysis in calorie-restricted mice: a trait potential for the life-extending effect of calorie restriction.

    abstract::Neuropeptide Y (NPY) is an orexigenic peptide that plays an essential role in caloric restriction (CR)-mediated lifespan extension. However, the mechanisms underlying the NPY-mediated effects in CR are poorly defined. Here, we report that NPY deficiency in male mice during CR increases mortality in association with li...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12558

    authors: Park S,Komatsu T,Kim SE,Tanaka K,Hayashi H,Mori R,Shimokawa I

    更新日期:2017-04-01 00:00:00

  • Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline.

    abstract::The transcription of ribosomal RNA genes (rDNA) is subject to epigenetic regulation, as it is abrogated by the methylation of CpG dinucleotides within their promoter region. Here, we investigated, through Sequenom platform, the age-related methylation status of the CpG island falling into the rDNA promoter in 472 bloo...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12603

    authors: D'Aquila P,Montesanto A,Mandalà M,Garasto S,Mari V,Corsonello A,Bellizzi D,Passarino G

    更新日期:2017-10-01 00:00:00

  • The M3 muscarinic receptor i3 domain confers oxidative stress protection on calcium regulation in transfected COS-7 cells.

    abstract::Evidence suggests that muscarinic receptors (MAChRs) are involved in various aspects of neuronal and vascular functioning, and that there is selective oxidative stress sensitivity (OSS) among MAChR subtypes. COS-7 cells transfected with M1, M2 and M4 subtypes show greater OSS than the M1 and M3 subtypes, as seen by th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9728.2004.00123.x

    authors: Joseph JA,Fisher DR,Carey A,Szprengiel A

    更新日期:2004-10-01 00:00:00

  • Naturally occurring genetic variation in the age-specific immune response of Drosophila melanogaster.

    abstract::Immunosenescence, the age-related decline in immune response, is a well-known consequence of aging. To date, most studies of age-related changes in immune response focused on the cellular and physiological bases of this decline; we have virtually no understanding of the genetic basis of age-related changes in the immu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00219.x

    authors: Lesser KJ,Paiusi IC,Leips J

    更新日期:2006-08-01 00:00:00

  • The Piwi-piRNA pathway: road to immortality.

    abstract::Despite its medical, social, and economic significance, understanding what primarily causes aging, that is, the mechanisms of the aging process, remains a fundamental and fascinating problem in biology. Accumulating evidence indicates that a small RNA-based gene regulatory machinery, the Piwi-piRNA pathway, represents...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12630

    authors: Sturm Á,Perczel A,Ivics Z,Vellai T

    更新日期:2017-10-01 00:00:00

  • Using measures of single-cell physiology and physiological state to understand organismic aging.

    abstract::Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has r...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/acel.12424

    authors: Mendenhall A,Driscoll M,Brent R

    更新日期:2016-02-01 00:00:00

  • Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study.

    abstract::Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that ha...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12039

    authors: Beekman M,Blanché H,Perola M,Hervonen A,Bezrukov V,Sikora E,Flachsbart F,Christiansen L,De Craen AJ,Kirkwood TB,Rea IM,Poulain M,Robine JM,Valensin S,Stazi MA,Passarino G,Deiana L,Gonos ES,Paternoster L,Sørensen TI

    更新日期:2013-04-01 00:00:00

  • Acetyl-L-carnitine protects yeast cells from apoptosis and aging and inhibits mitochondrial fission.

    abstract::In this work we report that carnitines, in particular acetyl-l-carnitine (ALC), are able to prolong the chronological aging of yeast cells during the stationary phase. Lifespan extension is significantly reduced in yca1 mutants as well in rho(0) strains, suggesting that the protective effects pass through the Yca1 cas...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00587.x

    authors: Palermo V,Falcone C,Calvani M,Mazzoni C

    更新日期:2010-08-01 00:00:00

  • Endothelial toll-like receptor 4 maintains lung integrity via epigenetic suppression of p16INK4a.

    abstract::We previously reported that the canonical innate immune receptor toll-like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and ep...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12914

    authors: Kim SJ,Shan P,Hwangbo C,Zhang Y,Min JN,Zhang X,Ardito T,Li A,Peng T,Sauler M,Lee PJ

    更新日期:2019-06-01 00:00:00

  • PAPP-A: a new anti-aging target?

    abstract::This article focuses on the role of PAPP-A in mammalian aging. It introduces PAPP-A and a little of its history, briefly discusses the function of PAPP-A in the insulin-like growth factor (IGF) system and the regulators of PAPP-A expression, and then reviews data concerning PAPP-A in aging and age-related diseases esp...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/j.1474-9726.2010.00630.x

    authors: Conover CA

    更新日期:2010-12-01 00:00:00

  • Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection.

    abstract::Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether a...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12315

    authors: Toth P,Tarantini S,Springo Z,Tucsek Z,Gautam T,Giles CB,Wren JD,Koller A,Sonntag WE,Csiszar A,Ungvari Z

    更新日期:2015-06-01 00:00:00

  • Targeting senescent cells alleviates obesity-induced metabolic dysfunction.

    abstract::Adipose tissue inflammation and dysfunction are associated with obesity-related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of dia...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12950

    authors: Palmer AK,Xu M,Zhu Y,Pirtskhalava T,Weivoda MM,Hachfeld CM,Prata LG,van Dijk TH,Verkade E,Casaclang-Verzosa G,Johnson KO,Cubro H,Doornebal EJ,Ogrodnik M,Jurk D,Jensen MD,Chini EN,Miller JD,Matveyenko A,Stout MB,Sc

    更新日期:2019-06-01 00:00:00

  • HIF-1 modulates longevity and healthspan in a temperature-dependent manner.

    abstract::The hypoxia-inducible factor HIF-1 has recently been identified as an important modifier of longevity in the roundworm Caenorhabditis elegans. Studies have reported that HIF-1 can function as both a positive and negative regulator of life span, and several disparate models have been proposed for the role of HIF in agi...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00672.x

    authors: Leiser SF,Begun A,Kaeberlein M

    更新日期:2011-04-01 00:00:00

  • Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice.

    abstract::H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase loca...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00432.x

    authors: Chen L,Na R,Gu M,Salmon AB,Liu Y,Liang H,Qi W,Van Remmen H,Richardson A,Ran Q

    更新日期:2008-12-01 00:00:00

  • Preserving transcriptional stress responses as an anti-aging strategy.

    abstract::The progressively increasing frailty, morbidity and mortality of aging organisms coincides with, and may be causally related to, their waning ability to adapt to environmental perturbations. Transcriptional responses to challenges, such as oxidative stress or pathogens, diminish with age. This effect is manifest in th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13297

    authors: Cheng Y,Pitoniak A,Wang J,Bohmann D

    更新日期:2021-01-20 00:00:00

  • The acceleration of reproductive aging in Nrg1flox/flox ;Cyp19-Cre female mice.

    abstract::Irregular menstrual cycles, reduced responses to exogenous hormonal treatments, and altered endocrine profiles (high FSH/high LH/low AMH) are observed in women with increasing age before menopause. In this study, because the granulosa cell-specific Nrg1 knockout mice (gcNrg1KO) presented ovarian and endocrine phenotyp...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12662

    authors: Umehara T,Kawai T,Kawashima I,Tanaka K,Okuda S,Kitasaka H,Richards JS,Shimada M

    更新日期:2017-12-01 00:00:00

  • Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling.

    abstract::Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13261

    authors: Bose C,Alves I,Singh P,Palade PT,Carvalho E,Børsheim E,Jun SR,Cheema A,Boerma M,Awasthi S,Singh SP

    更新日期:2020-11-01 00:00:00

  • Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway.

    abstract::Klotho is a recently discovered anti-aging gene. The purpose of this study was to investigate whether klotho gene transfer attenuates superoxide production and oxidative stress in rat aorta smooth muscle (RASM) cells. RASM cells were transfected with AAV plasmids carrying mouse klotho full-length cDNA (mKL) or LacZ as...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00796.x

    authors: Wang Y,Kuro-o M,Sun Z

    更新日期:2012-06-01 00:00:00

  • Experimental insights into age-exacerbated cognitive dysfunction after peripheral surgery.

    abstract::Here I comment on the recent contribution by Barrientos et al. J. Neurosci. 32, 14641-14648 (2012) addressing treatment possibilities for surgery-induced cognitive dysfunction. It has been over 15 years since the publication of a landmark study that indicated age as a major risk factor for postoperative cognitive dysf...

    journal_title:Aging cell

    pub_type: 评论,杂志文章

    doi:10.1111/acel.12066

    authors: Fidalgo AR

    更新日期:2013-06-01 00:00:00

  • Attenuation of ataxia telangiectasia mutated signalling mitigates age-associated intervertebral disc degeneration.

    abstract::Previously, we reported that persistent DNA damage accelerates ageing of the spine, but the mechanisms behind this process are not well understood. Ataxia telangiectasia mutated (ATM) is a protein kinase involved in the DNA damage response, which controls cell fate, including cell death. To test the role of ATM in the...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13162

    authors: Han Y,Zhou CM,Shen H,Tan J,Dong Q,Zhang L,McGowan SJ,Zhao J,Sowa GA,Kang JD,Niedernhofer LJ,Robbins PD,Vo NN

    更新日期:2020-07-01 00:00:00

  • Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity.

    abstract::We report a systematic RNAi longevity screen of 82 Caenorhabditis elegans genes selected based on orthology to human genes differentially expressed with age. We find substantial enrichment in genes for which knockdown increased lifespan. This enrichment is markedly higher than published genomewide longevity screens in...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12595

    authors: Sutphin GL,Backer G,Sheehan S,Bean S,Corban C,Liu T,Peters MJ,van Meurs JBJ,Murabito JM,Johnson AD,Korstanje R,Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Gene Expression Working Group.

    更新日期:2017-08-01 00:00:00

  • Some highlights of research on aging with invertebrates, 2009.

    abstract::This annual review focuses on invertebrate model organisms, which shed light on new mechanisms in aging and provide excellent systems for both genome-wide and in-depth analysis. This year, protein interaction networks have been used in a new bioinformatic approach to identify novel genes that extend replicative lifesp...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00498.x

    authors: Partridge L

    更新日期:2009-09-01 00:00:00

  • Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation.

    abstract::Amyloid-β 1-42 accumulation is the major pathogenetic event in Alzheimer's disease (AD), believed to be responsible for synaptic dysfunction and neuronal cell death. However, the physiologic activity of Aβ peptides remains elusive: Aβ might not only play a toxic role, but also act as a functional signaling intermediat...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00854.x

    authors: Guglielmotto M,Monteleone D,Boido M,Piras A,Giliberto L,Borghi R,Vercelli A,Fornaro M,Tabaton M,Tamagno E

    更新日期:2012-10-01 00:00:00

  • SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation.

    abstract::SIRT4 modulates energy homeostasis in multiple cell types and tissues. However, its role in meiotic oocytes remains unknown. Here, we report that mouse oocytes overexpressing SIRT4 are unable to completely progress through meiosis, showing the inadequate mitochondrial redistribution, lowered ATP content, elevated reac...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12789

    authors: Zeng J,Jiang M,Wu X,Diao F,Qiu D,Hou X,Wang H,Li L,Li C,Ge J,Liu J,Ou X,Wang Q

    更新日期:2018-08-01 00:00:00

  • The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans.

    abstract::Reactive oxygen species (ROS) play important signaling roles in metazoans, but also cause significant molecular damage. Animals tightly control ROS levels using sophisticated defense mechanisms, yet the transcriptional pathways that induce ROS defense remain incompletely understood. In the nematode Caenorhabditis eleg...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12154

    authors: Goh GY,Martelli KL,Parhar KS,Kwong AW,Wong MA,Mah A,Hou NS,Taubert S

    更新日期:2014-02-01 00:00:00

  • Stn1 is critical for telomere maintenance and long-term viability of somatic human cells.

    abstract::Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end prot...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12289

    authors: Boccardi V,Razdan N,Kaplunov J,Mundra JJ,Kimura M,Aviv A,Herbig U

    更新日期:2015-06-01 00:00:00

  • Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans.

    abstract::Protein synthesis is a regulated cellular process that links nutrients in the environment to organismal growth and development. Here we examine the role of genes that regulate mRNA translation in determining growth, reproduction, stress resistance and lifespan. Translational control of protein synthesis by regulators ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00266.x

    authors: Pan KZ,Palter JE,Rogers AN,Olsen A,Chen D,Lithgow GJ,Kapahi P

    更新日期:2007-02-01 00:00:00

  • A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation.

    abstract::Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer's disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extra...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12356

    authors: Mao J,Huang S,Liu S,Feng XL,Yu M,Liu J,Sun YE,Chen G,Yu Y,Zhao J,Pei G

    更新日期:2015-10-01 00:00:00

  • O-GlcNAcylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and memory deficits in Alzheimer's disease.

    abstract::Alzheimer's disease (AD) is characterized clinically by memory loss and cognitive decline. Protein kinase A (PKA)-CREB signaling plays a critical role in learning and memory. It is known that glucose uptake and O-GlcNAcylation are reduced in AD brain. In this study, we found that PKA catalytic subunits (PKAcs) were po...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12449

    authors: Xie S,Jin N,Gu J,Shi J,Sun J,Chu D,Zhang L,Dai CL,Gu JH,Gong CX,Iqbal K,Liu F

    更新日期:2016-06-01 00:00:00

  • Circulating levels of monocyte chemoattractant protein-1 as a potential measure of biological age in mice and frailty in humans.

    abstract::A serum biomarker of biological versus chronological age would have significant impact on clinical care. It could be used to identify individuals at risk of early-onset frailty or the multimorbidities associated with old age. It may also serve as a surrogate endpoint in clinical trials targeting mechanisms of aging. H...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12706

    authors: Yousefzadeh MJ,Schafer MJ,Noren Hooten N,Atkinson EJ,Evans MK,Baker DJ,Quarles EK,Robbins PD,Ladiges WC,LeBrasseur NK,Niedernhofer LJ

    更新日期:2018-04-01 00:00:00