Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice.

Abstract:

:Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age-related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24-30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age-related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.

journal_name

Aging Cell

journal_title

Aging cell

authors

Roh JD,Houstis N,Yu A,Chang B,Yeri A,Li H,Hobson R,Lerchenmüller C,Vujic A,Chaudhari V,Damilano F,Platt C,Zlotoff D,Lee RT,Shah R,Jerosch-Herold M,Rosenzweig A

doi

10.1111/acel.13159

subject

Has Abstract

pub_date

2020-06-01 00:00:00

pages

e13159

issue

6

eissn

1474-9718

issn

1474-9726

journal_volume

19

pub_type

杂志文章
  • The PI3K-Akt pathway inhibits senescence and promotes self-renewal of human skin-derived precursors in vitro.

    abstract::Skin-derived precursors (SKPs) are embryonic neural crest- or somite-derived multipotent progenitor cells with properties of dermal stem cells. Although a large number of studies deal with their differentiation ability and potential applications in tissue damage repair, only a few studies have concentrated on the regu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00704.x

    authors: Liu S,Liu S,Wang X,Zhou J,Cao Y,Wang F,Duan E

    更新日期:2011-08-01 00:00:00

  • Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial.

    abstract::Calorie restriction (CR) without malnutrition slows aging in animal models. Oxidative stress reduction was proposed to mediate CR effects. CR effect on urinary F2-isoprostanes, validated oxidative stress markers, was assessed in CALERIE, a two-year randomized controlled trial. Healthy volunteers (n = 218) were randomi...

    journal_title:Aging cell

    pub_type: 杂志文章,随机对照试验

    doi:10.1111/acel.12719

    authors: Il'yasova D,Fontana L,Bhapkar M,Pieper CF,Spasojevic I,Redman LM,Das SK,Huffman KM,Kraus WE,CALERIE Study Investigators.

    更新日期:2018-04-01 00:00:00

  • A dual role of the Wnt signaling pathway during aging in Caenorhabditis elegans.

    abstract::Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age-related diseases. These effects occur through highly complicated cell-to-cell ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12141

    authors: Lezzerini M,Budovskaya Y

    更新日期:2014-02-01 00:00:00

  • Reduced repression of cytokine signaling ameliorates age-induced decline in hematopoietic stem cell function.

    abstract::Aging causes profound effects on the hematopoietic stem cell (HSC) pool, including an altered output of mature progeny and enhanced self-propagation of repopulating-defective HSCs. An important outstanding question is whether HSCs can be protected from aging. The signal adaptor protein LNK negatively regulates hematop...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00863.x

    authors: Norddahl GL,Wahlestedt M,Gisler S,Sigvardsson M,Bryder D

    更新日期:2012-12-01 00:00:00

  • Preserving transcriptional stress responses as an anti-aging strategy.

    abstract::The progressively increasing frailty, morbidity and mortality of aging organisms coincides with, and may be causally related to, their waning ability to adapt to environmental perturbations. Transcriptional responses to challenges, such as oxidative stress or pathogens, diminish with age. This effect is manifest in th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13297

    authors: Cheng Y,Pitoniak A,Wang J,Bohmann D

    更新日期:2021-01-20 00:00:00

  • Sirt1-hypoxia-inducible factor-1α interaction is a key mediator of tubulointerstitial damage in the aged kidney.

    abstract::Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia-inducible factor (HIF)-1α is largely unknown. In this study, we investigated whether HIF-1α could be a deacetylation target of Sirt1 and the effect of their interact...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12904

    authors: Ryu DR,Yu MR,Kong KH,Kim H,Kwon SH,Jeon JS,Han DC,Noh H

    更新日期:2019-04-01 00:00:00

  • Gene expression-based drug repurposing to target aging.

    abstract::Aging is the largest risk factor for a variety of noncommunicable diseases. Model organism studies have shown that genetic and chemical perturbations can extend both lifespan and healthspan. Aging is a complex process, with parallel and interacting mechanisms contributing to its aetiology, posing a challenge for the d...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12819

    authors: Dönertaş HM,Fuentealba Valenzuela M,Partridge L,Thornton JM

    更新日期:2018-10-01 00:00:00

  • Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling.

    abstract::Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13261

    authors: Bose C,Alves I,Singh P,Palade PT,Carvalho E,Børsheim E,Jun SR,Cheema A,Boerma M,Awasthi S,Singh SP

    更新日期:2020-11-01 00:00:00

  • Amyloid-beta(1-42) alters structure and function of retinal pigmented epithelial cells.

    abstract::Age-related macular degeneration (AMD) is characterized by the formation of drusen, extracellular deposits associated with atrophy of the retinal pigmented epithelium (RPE), disturbance of the transepithelial barrier and photoreceptor death. Amyloid-beta (Abeta) is present in drusen but its role during AMD remains unk...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00456.x

    authors: Bruban J,Glotin AL,Dinet V,Chalour N,Sennlaub F,Jonet L,An N,Faussat AM,Mascarelli F

    更新日期:2009-04-01 00:00:00

  • Endothelial toll-like receptor 4 maintains lung integrity via epigenetic suppression of p16INK4a.

    abstract::We previously reported that the canonical innate immune receptor toll-like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and ep...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12914

    authors: Kim SJ,Shan P,Hwangbo C,Zhang Y,Min JN,Zhang X,Ardito T,Li A,Peng T,Sauler M,Lee PJ

    更新日期:2019-06-01 00:00:00

  • Doubled lifespan and patient-like pathologies in progeria mice fed high-fat diet.

    abstract::Hutchinson-Gilford Progeria Syndrome (HGPS) is a devastating premature aging disease. Mouse models have been instrumental for understanding HGPS mechanisms and for testing therapies, which to date have had only marginal benefits in mice and patients. Barriers to developing effective therapies include the unknown etiol...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12852

    authors: Kreienkamp R,Billon C,Bedia-Diaz G,Albert CJ,Toth Z,Butler AA,McBride-Gagyi S,Ford DA,Baldan A,Burris TP,Gonzalo S

    更新日期:2019-02-01 00:00:00

  • Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability.

    abstract::The aim of this study was to investigate changes in astrocyte density, morphology, proliferation and apoptosis occurring in the central nervous system during physiological aging. Astrocytes in retinal whole-mount preparations from Wistar rats aged 3 (young adult) to 25 months (aged) were investigated qualitatively and...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00402.x

    authors: Mansour H,Chamberlain CG,Weible MW 2nd,Hughes S,Chu Y,Chan-Ling T

    更新日期:2008-08-01 00:00:00

  • Astrocyte senescence: Evidence and significance.

    abstract::Astrocytes participate in numerous aspects of central nervous system (CNS) physiology ranging from ion balance to metabolism, and disruption of their physiological roles can therefore be a contributor to CNS dysfunction and pathology. Cellular senescence, one of the mechanisms of aging, has been proposed as a central ...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/acel.12937

    authors: Cohen J,Torres C

    更新日期:2019-06-01 00:00:00

  • The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians.

    abstract::Sequence variations in a variety of pro- or anti-inflammatory cytokine genes have been found to influence successful aging and longevity. Because of the role played by the transforming growth factor beta1 (TGF-beta1) cytokine in inflammation and regulation of immune responses, the variability of the TGF-beta1 gene may...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9728.2004.00129.x

    authors: Carrieri G,Marzi E,Olivieri F,Marchegiani F,Cavallone L,Cardelli M,Giovagnetti S,Stecconi R,Molendini C,Trapassi C,De Benedictis G,Kletsas D,Franceschi C

    更新日期:2004-12-01 00:00:00

  • Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults.

    abstract::Metformin and exercise independently improve insulin sensitivity and decrease the risk of diabetes. Metformin was also recently proposed as a potential therapy to slow aging. However, recent evidence indicates that adding metformin to exercise antagonizes the exercise-induced improvement in insulin sensitivity and car...

    journal_title:Aging cell

    pub_type: 杂志文章,随机对照试验

    doi:10.1111/acel.12880

    authors: Konopka AR,Laurin JL,Schoenberg HM,Reid JJ,Castor WM,Wolff CA,Musci RV,Safairad OD,Linden MA,Biela LM,Bailey SM,Hamilton KL,Miller BF

    更新日期:2019-02-01 00:00:00

  • Characterization of the direct targets of FOXO transcription factors throughout evolution.

    abstract::FOXO transcription factors (FOXOs) are central regulators of lifespan across species, yet they also have cell-specific functions, including adult stem cell homeostasis and immune function. Direct targets of FOXOs have been identified genome-wide in several species and cell types. However, whether FOXO targets are spec...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12479

    authors: Webb AE,Kundaje A,Brunet A

    更新日期:2016-08-01 00:00:00

  • Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence.

    abstract::The age-associated decline of immune responses causes high susceptibility to infections and reduced vaccine efficacy in the elderly. However, the mechanisms underlying age-related deficits are unclear. Here, we found that the expression and signaling of flagellin (FlaB)-dependent Toll-like receptor 5 (TLR5), unlike th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12383

    authors: Lim JS,Nguyen KC,Nguyen CT,Jang IS,Han JM,Fabian C,Lee SE,Rhee JH,Cho KA

    更新日期:2015-10-01 00:00:00

  • Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin.

    abstract::The accumulation of mitochondrial DNA (mtDNA) mutations has been proposed as an underlying cause of the aging process. Such mutations are thought to be generated principally through mechanisms involving oxidative stress. Skin is frequently exposed to a potent mutagen in the form of ultraviolet (UV) radiation and mtDNA...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00310.x

    authors: Birket MJ,Birch-Machin MA

    更新日期:2007-08-01 00:00:00

  • Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model.

    abstract::Incidence of intracerebral hemorrhage (ICH) and brain iron accumulation increases with age. Excess iron accumulation in brain tissues post-ICH induces oxidative stress and neuronal damage. However, the mechanisms underlying iron deregulation in ICH, especially in the aged ICH model have not been well elucidated. Ferro...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13235

    authors: Bao WD,Zhou XT,Zhou LT,Wang F,Yin X,Lu Y,Zhu LQ,Liu D

    更新日期:2020-11-01 00:00:00

  • Aldose reductase and AGE-RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats.

    abstract::Aging is inevitably accompanied by gradual and irreversible innate endothelial dysfunction. In this study, we tested the hypothesis that accentuation of glucose metabolism via the aldose reductase (AR) pathway contributes to age-related vascular dysfunction. AR protein and activity levels were significantly increased ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00606.x

    authors: Hallam KM,Li Q,Ananthakrishnan R,Kalea A,Zou YS,Vedantham S,Schmidt AM,Yan SF,Ramasamy R

    更新日期:2010-10-01 00:00:00

  • ING1a expression increases during replicative senescence and induces a senescent phenotype.

    abstract::The ING family of tumor suppressor proteins affects cell growth, apoptosis and response to DNA damage by modulating chromatin structure through association with different HAT and HDAC complexes. The major splicing isoforms of the ING1 locus are ING1a and INGlb. While INGlb plays a role in inducing apoptosis, the funct...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00427.x

    authors: Soliman MA,Berardi P,Pastyryeva S,Bonnefin P,Feng X,Colina A,Young D,Riabowol K

    更新日期:2008-12-01 00:00:00

  • Methylation of ELOVL2 gene as a new epigenetic marker of age.

    abstract::The discovery of biomarkers able to predict biological age of individuals is a crucial goal in aging research. Recently, researchers' attention has turn toward epigenetic markers of aging. Using the Illumina Infinium HumanMethylation450 BeadChip on whole blood DNA from a small cohort of 64 subjects of different ages, ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12005

    authors: Garagnani P,Bacalini MG,Pirazzini C,Gori D,Giuliani C,Mari D,Di Blasio AM,Gentilini D,Vitale G,Collino S,Rezzi S,Castellani G,Capri M,Salvioli S,Franceschi C

    更新日期:2012-12-01 00:00:00

  • Ribosylation triggering Alzheimer's disease-like Tau hyperphosphorylation via activation of CaMKII.

    abstract::Type 2 diabetes mellitus (T2DM) is regarded as one of the serious risk factors for age-related cognitive impairment; however, a causal link between these two diseases has so far not been established. It was recently discovered that, apart from high D-glucose levels, T2DM patients also display abnormally high concentra...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12355

    authors: Wei Y,Han C,Wang Y,Wu B,Su T,Liu Y,He R

    更新日期:2015-10-01 00:00:00

  • The GATA transcription factor/MTA-1 homolog egr-1 promotes longevity and stress resistance in Caenorhabditis elegans.

    abstract::Aging is associated with a large number of both phenotypic and molecular changes, but for most of these, it is not known whether these changes are detrimental, neutral, or protective. We have identified a conserved Caenorhabditis elegans GATA transcription factor/MTA-1 homolog egr-1 (lin-40) that extends lifespan and ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12179

    authors: Zimmerman SM,Kim SK

    更新日期:2014-04-01 00:00:00

  • Circulating levels of monocyte chemoattractant protein-1 as a potential measure of biological age in mice and frailty in humans.

    abstract::A serum biomarker of biological versus chronological age would have significant impact on clinical care. It could be used to identify individuals at risk of early-onset frailty or the multimorbidities associated with old age. It may also serve as a surrogate endpoint in clinical trials targeting mechanisms of aging. H...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12706

    authors: Yousefzadeh MJ,Schafer MJ,Noren Hooten N,Atkinson EJ,Evans MK,Baker DJ,Quarles EK,Robbins PD,Ladiges WC,LeBrasseur NK,Niedernhofer LJ

    更新日期:2018-04-01 00:00:00

  • Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice.

    abstract::H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase loca...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00432.x

    authors: Chen L,Na R,Gu M,Salmon AB,Liu Y,Liang H,Qi W,Van Remmen H,Richardson A,Ran Q

    更新日期:2008-12-01 00:00:00

  • Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila.

    abstract::The goal of this study is to test the role of mitochondria and of mitochondrial metabolism in determining the processes that influence aging of female and male Drosophila. We observe that Drosophila simulans females tended to have shorter lifespan, higher levels of hydrogen peroxide production and significantly lower ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00331.x

    authors: Ballard JW,Melvin RG,Miller JT,Katewa SD

    更新日期:2007-10-01 00:00:00

  • The acceleration of reproductive aging in Nrg1flox/flox ;Cyp19-Cre female mice.

    abstract::Irregular menstrual cycles, reduced responses to exogenous hormonal treatments, and altered endocrine profiles (high FSH/high LH/low AMH) are observed in women with increasing age before menopause. In this study, because the granulosa cell-specific Nrg1 knockout mice (gcNrg1KO) presented ovarian and endocrine phenotyp...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12662

    authors: Umehara T,Kawai T,Kawashima I,Tanaka K,Okuda S,Kitasaka H,Richards JS,Shimada M

    更新日期:2017-12-01 00:00:00

  • Neuronal control of lipid metabolism by STR-2 G protein-coupled receptor promotes longevity in Caenorhabditis elegans.

    abstract::The G protein-coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR-2, expressed in AWC and ASI a...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13160

    authors: Dixit A,Sandhu A,Modi S,Shashikanth M,Koushika SP,Watts JL,Singh V

    更新日期:2020-06-01 00:00:00

  • The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.

    abstract::The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of d...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12344

    authors: Zhu Y,Tchkonia T,Pirtskhalava T,Gower AC,Ding H,Giorgadze N,Palmer AK,Ikeno Y,Hubbard GB,Lenburg M,O'Hara SP,LaRusso NF,Miller JD,Roos CM,Verzosa GC,LeBrasseur NK,Wren JD,Farr JN,Khosla S,Stout MB,McGowan SJ,Fuh

    更新日期:2015-08-01 00:00:00