QSARs for the toxicity of polychlorinated dibenzofurans through DFT-calculated descriptors of polarizabilities, hyperpolarizabilities and hyper-order electric moments.

Abstract:

:DFT-B3LYP method with 6-31G(**) basis set was employed to fully optimize the electronic structures of 135 polychlorinated dibenzofurans and parent compound, namely dibenzofuran. It was demonstrated that polarizability anisotropy and mean polarizability could change sensitively and systematically with chlorine number and substitution pattern. And new quantitative structure-activity relationships (QSARs) focused on the binding affinities of aryl hydrocarbon receptor (AhR), aryl hydrocarbon hydroxylase (AHH) and 7-ethoxyresorufin O-deethylase (EROD) induction potencies of PCDFs were developed. It was concluded that polarizability anisotropy in conjunction with hyperpolarizabilties and hyper-order electric moments, e.g. octupole moments could well interpret the variation of toxicity of different congeners and dispersion interaction should be the leading form among various interactions. Although the terms of hyperpolarizabilities and hyper-order electric moments were not the same significant ones as polarizability anisotropy, the long-range interactions characterized by them should not be ignored in explaining the toxicity.

journal_name

Chemosphere

journal_title

Chemosphere

authors

Gu C,Jiang X,Ju X,Yu G,Bian Y

doi

10.1016/j.chemosphere.2006.10.057

subject

Has Abstract

pub_date

2007-04-01 00:00:00

pages

1325-34

issue

7

eissn

0045-6535

issn

1879-1298

pii

S0045-6535(06)01385-3

journal_volume

67

pub_type

杂志文章