Research on an Mg-Zn alloy as a degradable biomaterial.

Abstract:

:In this study a binary Mg-Zn magnesium alloy was researched as a degradable biomedical material. An Mg-Zn alloy fabricated with high-purity raw materials and using a clean melting process had very low levels of impurities. After solid solution treatment and hot working the grain size of the Mg-Zn alloy was finer and a uniform single phase was gained. The mechanical properties of this Mg-Zn alloy were suitable for implant applications, i.e. the tensile strength and elongation achieved were approximately 279.5MPa and 18.8%, respectively. The results of in vitro degradation experiments including electrochemical measurements and immersion tests revealed that the zinc could elevate the corrosion potential of Mg in simulated body fluid (SBF) and reduce the degradation rate. The corrosion products on the surface of Mg-Zn were hydroxyapatite (HA) and other Mg/Ca phosphates in SBF. In addition, the influence caused by in vitro degradation on mechanical properties was studied, and the results showed that the bending strength of Mg-Zn alloy dropped sharply in the earlier stage of degradation, while smoothly during the later period. The in vitro cytotoxicity of Mg-Zn was examined. The result 0-1 grade revealed that the Mg-Zn alloy was harmless to L-929 cells. For in vivo experiments, Mg-Zn rods were implanted into the femoral shaft of rabbits. The radiographs illustrated that the magnesium alloy could be gradually absorbed in vivo at about 2.32mm/yr degradation rate obtained by weight loss method. Hematoxylin and eosin (HE) stained section around Mg-Zn rods suggested that there were newly formed bone surrounding the implant. HE stained tissue (containing heart, liver, kidney and spleen tissues) and the biochemical measurements, including serum magnesium, serum creatinine (CREA), blood urea nitrogen (BUN), glutamic-pyruvic transaminase (GPT) and creatine kinase (CK) proved that the in vivo degradation of Mg-Zn did not harm the important organs. Moreover, no adverse effects of hydrogen generated by degradation had been observed and also no negative effects caused by the release of zinc were detected. These results suggested that the novel Mg-Zn binary alloy had good biocompatibility in vivo.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Zhang S,Zhang X,Zhao C,Li J,Song Y,Xie C,Tao H,Zhang Y,He Y,Jiang Y,Bian Y

doi

10.1016/j.actbio.2009.06.028

subject

Has Abstract

pub_date

2010-02-01 00:00:00

pages

626-40

issue

2

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(09)00279-7

journal_volume

6

pub_type

杂志文章
  • Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro.

    abstract::Polyethylene (PE) and polypropylene (PP) were functionalized at their surfaces with cyclodextrins (CDs) in order to prevent the adhesion and proliferation of Candida albicans on medical devices made from these polymers. The surface functionalization involved the grafting of glycidyl methacrylate (GMA) after oxidative ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.10.039

    authors: Nava-Ortiz CA,Burillo G,Concheiro A,Bucio E,Matthijs N,Nelis H,Coenye T,Alvarez-Lorenzo C

    更新日期:2010-04-01 00:00:00

  • Modular polymer design to regulate phenotype and oxidative response of human coronary artery cells for potential stent coating applications.

    abstract::Polymer properties can be tailored by copolymerizing subunits with specific physico-chemical characteristics. Vascular stent materials require biocompatibility, mechanical strength, and prevention of restenosis. Here we copolymerized poly(ε-caprolactone) (PCL), poly(ethylene glycol) (PEG), and carboxyl-PCL (cPCL) at v...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.10.003

    authors: Crowder SW,Gupta MK,Hofmeister LH,Zachman AL,Sung HJ

    更新日期:2012-02-01 00:00:00

  • Functional biopolymer-based matrices for modulation of chronic wound enzyme activities.

    abstract::Collagen, collagen/hyaluronic acid (HA) and collagen/HA/chitosan (CS) sponges loaded with epigallocatechin gallate (EGCG), catechin (CAT) and gallic acid (GA) were developed and evaluated as active chronic wound dressings. Their physico-mechanical properties, biostability, biocompatibility and ability to inhibit in vi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.10.014

    authors: Francesko A,Soares da Costa D,Reis RL,Pashkuleva I,Tzanov T

    更新日期:2013-02-01 00:00:00

  • In vivo biomechanical stability of osseointegrating mesoporous TiO(2) implants.

    abstract::Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ord...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.07.035

    authors: Karlsson J,Jimbo R,Fathali HM,Schwartz-Filho HO,Hayashi M,Halvarsson M,Wennerberg A,Andersson M

    更新日期:2012-12-01 00:00:00

  • Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride).

    abstract::This work reports and discusses the influence of four phosphonium-based ionic liquids (PhILs), namely trihexyl(tetradecyl) phosphonium dicyanamide, [P(6,6,6,14)][dca]; trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide, [P(6,6,6,14)][Tf(2)N]; tetrabutyl phosphonium bromide, [P(4,4,4,4)][Br]; and tetrab...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.10.034

    authors: Dias AM,Marceneiro S,Braga ME,Coelho JF,Ferreira AG,Simões PN,Veiga HI,Tomé LC,Marrucho IM,Esperança JM,Matias AA,Duarte CM,Rebelo LP,de Sousa HC

    更新日期:2012-03-01 00:00:00

  • Immobilization of glycoproteins, such as VEGF, on biodegradable substrates.

    abstract::Attachment of growth factors to biodegradable polymers, such as poly(lactide-co-glycolide) (PLGA), may enhance and/or accelerate integration of tissue engineering scaffolds. Although proteins are commonly bound via abundant amino groups, a more selective approach may increase bioactivity of immobilized molecules. In t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.02.017

    authors: Sharon JL,Puleo DA

    更新日期:2008-07-01 00:00:00

  • Effect of cleaning and sterilization on titanium implant surface properties and cellular response.

    abstract::Titanium (Ti) has been widely used as an implant material due to the excellent biocompatibility and corrosion resistance of its oxide surface. Biomaterials must be sterile before implantation, but the effects of sterilization on their surface properties have been less well studied. The effects of cleaning and steriliz...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.11.026

    authors: Park JH,Olivares-Navarrete R,Baier RE,Meyer AE,Tannenbaum R,Boyan BD,Schwartz Z

    更新日期:2012-05-01 00:00:00

  • Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits.

    abstract::The mechanical and electrical properties of polycaprolactone fumarate-polypyrrole (PCLF-PPy) scaffolds were studied under physiological conditions to evaluate their ability to maintain the material properties necessary for application as conductive nerve conduits. PC12 cells cultured on PCLF-PPy scaffolds were stimula...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.10.013

    authors: Moroder P,Runge MB,Wang H,Ruesink T,Lu L,Spinner RJ,Windebank AJ,Yaszemski MJ

    更新日期:2011-03-01 00:00:00

  • Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging.

    abstract::A pH-sensitive copolymer PAsp(DIP)-b-PAsp(MEA) (PDPM) was synthesized and self-assembled to micelle loading chemotherapeutic drug doxorubicin (DOX) and introducing a gold nanocage structure for photothermo-chemotherapy and photoacoustic imaging. After further surface modification with polyethylene glycol (PEG), the DO...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.10.018

    authors: Zhou G,Xiao H,Li X,Huang Y,Song W,Song L,Chen M,Cheng D,Shuai X

    更新日期:2017-12-01 00:00:00

  • Upgrading prevascularization in tissue engineering: A review of strategies for promoting highly organized microvascular network formation.

    abstract::Functional and perfusable vascular network formation is critical to ensure the long-term survival and functionality of engineered tissues after their transplantation. Although several vascularization strategies have been reviewed in past, the significance of microvessel organization in three-dimensional (3D) scaffolds...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2019.03.016

    authors: Sharma D,Ross D,Wang G,Jia W,Kirkpatrick SJ,Zhao F

    更新日期:2019-09-01 00:00:00

  • Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties.

    abstract::This paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. Samples ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.10.033

    authors: Johnson KL,Trim MW,Francis DK,Whittington WR,Miller JA,Bennett CE,Horstemeyer MF

    更新日期:2017-01-15 00:00:00

  • Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients.

    abstract::Substrate stiffness is emerging as an effective tool for the regulation of cell behaviours such as locomotion, proliferation and differentiation. In order to explore the potential application of this biophysical tool, material platforms displaying lateral and continuously graded stiffness are advantageous since they a...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.09.030

    authors: Wang PY,Tsai WB,Voelcker NH

    更新日期:2012-02-01 00:00:00

  • Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds.

    abstract::Surgical sutures represent the gold standard for wound closure, however, their main purpose is still limited to a mechanical function rather than playing a bioactive role. Since oxygen and pro-regenerative growth factors have been broadly described as key players for the healing process, in this study we evaluated the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.09.060

    authors: Centeno-Cerdas C,Jarquín-Cordero M,Chávez MN,Hopfner U,Holmes C,Schmauss D,Machens HG,Nickelsen J,Egaña JT

    更新日期:2018-11-01 00:00:00

  • Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems.

    abstract::The combinatorial polymer library approach has been proven to be effective for the optimization of therapeutic delivery systems. The library of polymers with chemical diversity has been synthesized by (i) polymerization of functionalized monomers or (ii) post-polymerization modification of reactive polymers. Most scie...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2018.04.010

    authors: Zhong Y,Zeberl BJ,Wang X,Luo J

    更新日期:2018-06-01 00:00:00

  • Orientation of human osteoblasts on hydroxyapatite-based microchannels.

    abstract::The effect of calcium phosphate-based microchannels on the growth and orientation of human osteoblast cells is investigated in this study. As substrates, hydroxyapatite-based microchannels with high contouring accuracy were fabricated by a novel micro-moulding technique. Microchannels obtained by this method featured ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.07.031

    authors: Holthaus MG,Stolle J,Treccani L,Rezwan K

    更新日期:2012-01-01 00:00:00

  • Fabrication and characterization of bioactive and antibacterial composites for dental applications.

    abstract::There is an increasing clinical need to design novel dental materials that combine regenerative and antibacterial properties. In this work the characterization of a recently developed sol-gel-derived bioactive glass ceramic containing silver ions (Ag-BG) is presented. The microstructural characteristics, ion release p...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.04.030

    authors: Chatzistavrou X,Fenno JC,Faulk D,Badylak S,Kasuga T,Boccaccini AR,Papagerakis P

    更新日期:2014-08-01 00:00:00

  • Mesenchymal stromal cell-derived extracellular vesicles modulate microglia/macrophage polarization and protect the brain against hypoxia-ischemic injury in neonatal mice by targeting delivery of miR-21a-5p.

    abstract::Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) (MSC-EVs) exhibit protective effects in damaged or diseased tissues. However, the role of EVs secreted by MSC in hypoxia-ischemic (HI) injury in neonatal mice remains unknown. Systemic administration of MSC-EVs attenuated acute brain damage and neuroi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.06.037

    authors: Xin D,Li T,Chu X,Ke H,Yu Z,Cao L,Bai X,Liu D,Wang Z

    更新日期:2020-09-01 00:00:00

  • Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells.

    abstract::Infection is a major cause of failure of inserted or implanted biomedical devices (biomaterials). During surgery, bacteria may adhere to the implant, initiating biofilm formation. Bacteria are also observed in and recultured from the tissue surrounding implants, and may even reside inside host cells. Whether these bac...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.08.012

    authors: Riool M,de Boer L,Jaspers V,van der Loos CM,van Wamel WJB,Wu G,Kwakman PHS,Zaat SAJ

    更新日期:2014-12-01 00:00:00

  • Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects.

    abstract::To overcome clinical issues caused by large bone defects and subsequent nonunion, various approaches to bone regeneration have been researched, including tissue engineering, biomaterials, stem cells and drug screening. Previously, we developed a free-standing biodegradable polymer nanosheet composed of poly(L-lactic a...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.12.031

    authors: Murahashi Y,Yano F,Nakamoto H,Maenohara Y,Iba K,Yamashita T,Tanaka S,Ishihara K,Okamura Y,Moro T,Saito T

    更新日期:2019-02-01 00:00:00

  • Effect of peptide secondary structure on adsorption and adsorbed film properties on end-grafted polyethylene oxide layers.

    abstract::Poly-l-lysine (PLL), in α-helix or β-sheet configuration, was used as a model peptide for investigating the effect of secondary structures on adsorption events to poly(ethylene oxide) (PEO) modified surfaces formed using θ solvents. Circular dichroism results showed that the secondary structure of PLL persisted upon a...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.09.010

    authors: Binazadeh M,Zeng H,Unsworth LD

    更新日期:2014-01-01 00:00:00

  • Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles.

    abstract::There is increasing interest in the development of new tissue engineering strategies to deliver cells and bioactive agents encapsulated in a biodegradable matrix through minimally invasive procedures. The present work proposes to combine chitosan-beta-glycerophosphate salt formulations with bioactive glass nanoparticl...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.08.006

    authors: Couto DS,Hong Z,Mano JF

    更新日期:2009-01-01 00:00:00

  • Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration.

    abstract::The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.03.050

    authors: He Y,Li Q,Ma C,Xie D,Li L,Zhao Y,Shan D,Chomos SK,Dong C,Tierney JW,Sun L,Lu D,Gui L,Yang J

    更新日期:2019-07-15 00:00:00

  • Unveiling the fate of adhering bacteria to antimicrobial surfaces: expression of resistance-associated genes and macrophage-mediated phagocytosis.

    abstract::Since most antibacterial coatings reported to fight biomaterial-associated infections (BAI) fail in completely preventing bacterial colonization, it is crucial to know the impact of that small fraction of adhered bacteria in BAI recrudescence. This study aims to understand the fate of Staphylococcus aureus able to adh...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.07.052

    authors: Alves DF,Magalhães AP,Neubauer D,Bauer M,Kamysz W,Pereira MO

    更新日期:2018-09-15 00:00:00

  • An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.

    abstract::Calcium phosphate based bioceramics have been widely used for orthopedic applications due to their chemical similarity to natural bone. The Ca/P stoichiometry of calcium phosphates strongly influences their performance under biological conditions, which have not yet been fully elucidated to date. For this reason, the ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.02.025

    authors: Liu H,Yazici H,Ergun C,Webster TJ,Bermek H

    更新日期:2008-09-01 00:00:00

  • Aggregation-induced emission-based ionic liquids for bacterial killing, imaging, cell labeling, and bacterial detection in blood cells.

    abstract::A series of aggregation-induced emission (AIE)-based imidazolium-type ionic liquids (ILs) were designed and synthesized for bacterial killing and imaging, cell labeling, and bacterial detection in blood cells. The AIE-based ILs showed antibacterial activities against both Escherichia coli and Staphylococcus aureus. Th...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.07.039

    authors: Shi J,Wang M,Sun Z,Liu Y,Guo J,Mao H,Yan F

    更新日期:2019-10-01 00:00:00

  • Differences in mineral composition and morphology between men and women in aortic valve calcification.

    abstract::Aortic valve calcification leads to the deposition of calcium phosphate minerals in the extracellular matrix of the aortic valve leaflets. The mineral deposits can severely narrow the opening of the aortic valve, leading to aortic stenosis. There are no therapies to halt or slow down disease progression and the mechan...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.02.030

    authors: Gourgas O,Khan K,Schwertani A,Cerruti M

    更新日期:2020-04-01 00:00:00

  • Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.

    abstract:UNLABELLED:Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.04.004

    authors: Chen MH,Hanagata N,Ikoma T,Huang JY,Li KY,Lin CP,Lin FH

    更新日期:2016-06-01 00:00:00

  • Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model.

    abstract::Myocardial infarction (MI) leads to the loss of cardiomyocytes, followed by left ventricular (LV) remodeling and cardiac dysfunction. The authors hypothesize that an elastic, biodegradable nanofibrous cardiac patch loaded with mesenchymal stem cells (MSC) could restrain LV remodeling and improve cardiac function after...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.02.030

    authors: Kai D,Wang QL,Wang HJ,Prabhakaran MP,Zhang Y,Tan YZ,Ramakrishna S

    更新日期:2014-06-01 00:00:00

  • Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles.

    abstract:UNLABELLED:Fluorescence microscopy and spectroscopy techniques are commonly used to investigate complex and interacting biological systems (e.g. proteins and nanoparticles in living cells), since these techniques can explore intracellular dynamics with high time resolution at the nanoscale. Here we extended one of the ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.07.031

    authors: Digiacomo L,Digman MA,Gratton E,Caracciolo G

    更新日期:2016-09-15 00:00:00

  • Multi-armed poly(aspartate-g-OEI) copolymers as versatile carriers of pDNA/siRNA.

    abstract::To search for potential non-viral nucleic acids carriers, a series of novel cationic polymers, multi-armed poly(aspartate-graft-oligoethylenimine) (MP-g-OEI) copolymers were designed and synthesized by grafting different types of oligoethylenimine (OEI) to a multi-armed poly(l-aspartic acid) backbone. The as-synthesiz...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.02.007

    authors: Dong X,Lin L,Chen J,Tian H,Xiao C,Guo Z,Li Y,Wei Y,Chen X

    更新日期:2013-06-01 00:00:00