Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions.

Abstract:

:The creation of vascularized engineered tissues of clinically relevant size is a major challenge of tissue engineering. While it is known that endothelial and mural vascular cells are integral to the formation of stable blood vessels, the specific cell types and optimal conditions for engineered vascular networks are poorly understood. To this end, we investigated the vasculogenic potential of human mesenchymal stem cell (MSC) populations derived from three different sources: (a) bone marrow aspirates; (b) perivascular cells from the umbilical cord vein; and (c) perivascular cells from the umbilical cord artery. Cell populations were isolated and identified as MSCs according to their phenotypes and differentiation potential. Human umbilical vein endothelial cells (HUVECs) were used as a standard for endothelial cells. A novel co-culture system was developed to study cell-cell interactions in a spatially controlled three-dimensional (3D) fibrin hydrogel model. Using microfluidic patterning, it was possible to localize hydrogel-encapsulated HUVECs and MSCs within separate channels spaced at 500, 1000 or 2000 microm. All three MSC populations had similar expression profiles of mesenchymal cell markers and similar capacity for osteogenic and adipogenic differentiation. However, bone marrow-derived MSCs (but not umbilical vein or artery derived MSCs) showed strong distance-dependent migration toward HUVECs and supported the formation of stable vascular networks resembling capillary-like vasculature. The presented approach provides a simple and robust model to study the cell-cell communication of relevance to engineering vascularized tissues.

journal_name

J Tissue Eng Regen Med

authors

Trkov S,Eng G,Di Liddo R,Parnigotto PP,Vunjak-Novakovic G

doi

10.1002/term.231

subject

Has Abstract

pub_date

2010-03-01 00:00:00

pages

205-15

issue

3

eissn

1932-6254

issn

1932-7005

journal_volume

4

pub_type

杂志文章
  • Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits.

    abstract::Nerve conduits are promising alternatives for repairing nerve gaps; they provide a close microenvironment that supports nerve regeneration. In this sense, histological analysis of axonal growth is a determinant to achieve successful nerve regeneration. To evaluate this process, the most-used immunohistochemical marker...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1949

    authors: Carriel V,Garzón I,Campos A,Cornelissen M,Alaminos M

    更新日期:2017-02-01 00:00:00

  • Treatment of a large osseous defect in a feline tarsus using a stem cell-seeded custom implant.

    abstract::The aim of this study is to describe the treatment of an infected segmental bone defect in a cat using a novel, custom-designed titanium implant seeded with adipose-derived stem cells (AdMSCs) to facilitate osseous ingrowth and preserve limb function. Large bone defects occur secondary to trauma, infection, or neoplas...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type:

    doi:10.1002/term.3104

    authors: Fitzpatrick N,Black C,Choucroun M,Blunn G,Meswania J,Sanghani-Kerai A

    更新日期:2020-10-01 00:00:00

  • Novel wound dressing based on nanofibrous PHBV-keratin mats.

    abstract::Keratin is an important protein used for wound healing and tissue recovery. In this study, keratin was first extracted from raw materials and chemically modified to obtain stable keratin (m-keratin). The raw and m-keratin were examined by Raman spectroscopy. The molecular weight of the m-keratin was analysed by SDS-PA...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1653

    authors: Yuan J,Geng J,Xing Z,Shim KJ,Han I,Kim JC,Kang IK,Shen J

    更新日期:2015-09-01 00:00:00

  • Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo.

    abstract::Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabri...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.497

    authors: Saito E,Liao EE,Hu WW,Krebsbach PH,Hollister SJ

    更新日期:2013-02-01 00:00:00

  • Rapid treatment of full-thickness skin loss using ovine tendon collagen type I scaffold with skin cells.

    abstract::The full-thickness skin wound is a common skin complication affecting millions of people worldwide. Delayed treatment of this condition causes the loss of skin function and integrity that could lead to the development of chronic wounds or even death. This study was aimed to develop a rapid wound treatment modality usi...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2842

    authors: Mh Busra F,Rajab NF,Tabata Y,Saim AB,B H Idrus R,Chowdhury SR

    更新日期:2019-05-01 00:00:00

  • Tantalum trabecular metal - addition of human skeletal cells to enhance bone implant interface strength and clinical application.

    abstract::The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous human bone marrow stromal cells (HBMSCs). Limitations in the use of allograft have prompted the investigation of tantalum trabecular metal (TTM) as a potential alternative. TTM is already in widespread orthopaedic use,...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1525

    authors: Smith JO,Sengers BG,Aarvold A,Tayton ER,Dunlop DG,Oreffo RO

    更新日期:2014-04-01 00:00:00

  • Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering.

    abstract::The objective of this study was to evaluate whether growth factors (FGF-2, FGF-4 and FGF-6) used alone or in combination with TGFβ2 are able to increase the proliferation and induce the differentiation of human bone marrow mesenchymal stem cells (hMSCs) to chondrocytes, with a view to using them in cartilage tissue en...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.416

    authors: Bosetti M,Boccafoschi F,Leigheb M,Bianchi AE,Cannas M

    更新日期:2012-03-01 00:00:00

  • Autologous human nasal epithelial cell sheet using temperature-responsive culture insert for transplantation after middle ear surgery.

    abstract::Postoperative mucosal regeneration of the middle ear cavity and the mastoid cavity is of great importance after middle ear surgery. However, the epithelialization of the mucosa in the middle ear is retarded because chronic inflammation without epithelialization aggravates gas exchange and clinical function. These envi...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2012

    authors: Hama T,Yamamoto K,Yaguchi Y,Murakami D,Sasaki H,Yamato M,Okano T,Kojima H

    更新日期:2017-04-01 00:00:00

  • An adipogenic gel for surgical reconstruction of the subcutaneous fat layer in a rat model.

    abstract::'Off-the-shelf' tissue-engineered skin alternatives for epidermal and dermal skin layers are available; however, no such alternative for the subdermal fat layer exists. Without this well-vascularized layer, skin graft take is variable and grafts may have reduced mobility, contracture and contour defects. In this study...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2025

    authors: Debels H,Gerrand YW,Poon CJ,Abberton KM,Morrison WA,Mitchell GM

    更新日期:2017-04-01 00:00:00

  • Three-dimensional 10% cyclic strain reduces bovine aortic endothelial cell angiogenic sprout length and augments tubulogenesis in tubular fibrin hydrogels.

    abstract::The development of a functional microvasculature is critical to the long-term survival of implanted tissue-engineered constructs. Dynamic culture conditions have been shown to significantly modulate phenotypic characteristics and stimulate proliferation of cells within hydrogel-based tissue engineered blood vessels. A...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.323

    authors: Gassman AA,Kuprys T,Ucuzian AA,Brey E,Matsumura A,Pang Y,Larson J,Greisler HP

    更新日期:2011-05-01 00:00:00

  • Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.

    abstract::Bone marrow mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering. We used mesenchymal stem cells from human bone marrow (hMSCs) as the seeding cells to investigate the potential of hepatocytic differentiation of hMSCs in porous polylactic glycolic acid (PLGA) scaffolds under p...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.393

    authors: Wang J,Zong C,Shi D,Wang W,Shen D,Liu L,Tong X,Zheng Q,Gao C

    更新日期:2012-01-01 00:00:00

  • Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    abstract::To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1774

    authors: Hu WW,Wang Z,Krebsbach PH

    更新日期:2016-02-01 00:00:00

  • Initial evaluation of vascular ingrowth into superporous hydrogels.

    abstract::There is a need for new materials and architectures for tissue engineering and regenerative medicine. Based upon our recent results developing novel scaffold architecture, we hypothesized that this new architecture would foster vascularization, a particular need for tissue engineering. We report on the potential of su...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.183

    authors: Keskar V,Gandhi M,Gemeinhart EJ,Gemeinhart RA

    更新日期:2009-08-01 00:00:00

  • A papain-induced disc degeneration model for the assessment of thermo-reversible hydrogel-cells therapeutic approach.

    abstract::Nucleus pulposus (NP) regeneration by the application of injectable cell-embedded hydrogels is an appealing approach for tissue engineering. We investigated a thermo-reversible hydrogel (TR-HG), based on a modified polysaccharide with a thermo-reversible polyamide [poly(N-isopropylacrylamide), pNIPAM], which is made t...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1667

    authors: Malonzo C,Chan SC,Kabiri A,Eglin D,Grad S,Bonél HM,Benneker LM,Gantenbein-Ritter B

    更新日期:2015-12-01 00:00:00

  • In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds.

    abstract::Poly(ether imide) (PEI), which can be chemically functionalized with biologically active ligands, has emerged as a potential biomaterial for medical implants. Electrospun PEI scaffolds have shown advantageous properties, such as enhanced endothelial cell adherence, proliferation and low platelet adhesion in in vitro e...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2002

    authors: Haase T,Krost A,Sauter T,Kratz K,Peter J,Kamann S,Jung F,Lendlein A,Zohlnhöfer D,Rüder C

    更新日期:2017-04-01 00:00:00

  • Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma.

    abstract::Macroporous calcium phosphate cement (CPC) with stem cell seeding is promising for bone regeneration. The objective of this study was to investigate the effects of co-delivering autologous bone marrow mesenchymal stem cells (BMSCs) and autologous platelet-rich plasma (PRP) in CPC scaffold for bone regeneration in mini...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2416

    authors: Qiu G,Shi Z,Xu HHK,Yang B,Weir MD,Li G,Song Y,Wang J,Hu K,Wang P,Zhao L

    更新日期:2018-02-01 00:00:00

  • Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells.

    abstract::Whole body vibration (WBV) is a very widespread mechanical stimulus used in physical therapy, rehabilitation and fitness centres. It has been demonstrated that vibration induces improvements in muscular strength and performance and increases bone density. We investigated the effects of low-amplitude, high frequency vi...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1533

    authors: Ceccarelli G,Benedetti L,Galli D,Prè D,Silvani G,Crosetto N,Magenes G,Cusella De Angelis MG

    更新日期:2014-05-01 00:00:00

  • Clinically applicable transplantation procedure of dermal papilla cells for hair follicle regeneration.

    abstract::Dermal papilla cells (DPCs) interact with epithelial stem cells and induce hair folliculogenesis. Cell-based therapies using expanded DPCs for hair regeneration have been unsuccessful in humans. Two major challenges remain: first, expanded DPCs obtained from adult hair follicles have functional limitations; second, a ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.400

    authors: Aoi N,Inoue K,Kato H,Suga H,Higashino T,Eto H,Doi K,Araki J,Iida T,Katsuta T,Yoshimura K

    更新日期:2012-02-01 00:00:00

  • Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system.

    abstract::Islet replacement is a promising strategy for the treatment of patients with type 1 diabetes and patients who have undergone total pancreatectomy. Recent progress in cellular reprogramming technology may allow the transplantation of a patient's own pancreatic cells. Although many studies have reported the differentiat...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2228

    authors: Mihara Y,Matsuura K,Sakamoto Y,Okano T,Kokudo N,Shimizu T

    更新日期:2017-11-01 00:00:00

  • Subnormothermic short-term cultivation improves the vascularization capacity of adipose tissue-derived microvascular fragments.

    abstract::Adipose tissue-derived microvascular fragments (ad-MVFs) are promising vascularization units for tissue engineering. In this study, we analysed the effects of normothermic (37°C) and subnormothermic (20°C) short-term cultivation on their viability and network forming capacity. Ad-MVFs from green fluorescent protein (G...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2774

    authors: Laschke MW,Heß A,Scheuer C,Karschnia P,Menger MD

    更新日期:2019-02-01 00:00:00

  • New observations of the hierarchical structure of human enamel, from nanoscale to microscale.

    abstract::Microstructure in terms of hierarchical assembly exists widely in mineralized biomaterials, fulfilling an important role in setting up their outstanding properties. The purpose of this study was to investigate the hierarchical assembly of enamel structure and functions, which are related to the unique characteristics ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.21

    authors: Cui FZ,Ge J

    更新日期:2007-05-01 00:00:00

  • Nanopatterned collagen tubes for vascular tissue engineering.

    abstract::Nanopatterned (330 nm wide channels) type I collagen films were prepared by solvent casting on poly(dimethyl siloxane) (PDMS) templates. These films were rolled into tubular constructs and crosslinked. Tubular constructs were incubated under cell culture conditions for 28 days and examined by stereomicroscopy and scan...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.99

    authors: Zorlutuna P,Hasirci N,Hasirci V

    更新日期:2008-08-01 00:00:00

  • Aerosol-based airway epithelial cell delivery improves airway regeneration and repair.

    abstract::Aerosol-based cell therapy has emerged as a novel and promising therapeutic strategy for treating lung diseases. The goal of this study was to determine the safety and efficacy of aerosol-based airway epithelial cell (AEC) delivery in the setting of acute lung injury induced by tracheal brushing in rabbit. Twenty-four...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2421

    authors: Kardia E,Ch'ng ES,Yahaya BH

    更新日期:2018-02-01 00:00:00

  • Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model.

    abstract::Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1700

    authors: Hanson SE,Kleinbeck KR,Cantu D,Kim J,Bentz ML,Faucher LD,Kao WJ,Hematti P

    更新日期:2016-02-01 00:00:00

  • Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications.

    abstract::Many studies have highlighted the role of silicon in human bone formation and maintenance. Silicon, in fact, is considered to nucleate the precipitation of hydroxyapatite and to reduce the bone resorption. For this reason, we have combined silk fibroin (SF) with silicon-releasing diatom particles (DPs), as potential m...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2373

    authors: Le TDH,Liaudanskaya V,Bonani W,Migliaresi C,Motta A

    更新日期:2018-01-01 00:00:00

  • Human gingival mesenchymal stem cells pretreated with vesicular moringin nanostructures as a new therapeutic approach in a mouse model of spinal cord injury.

    abstract::Spinal cord injury (SCI) is a neurological disorder that arises from a primary acute mechanical lesion, followed by a pathophysiological cascade of events that leads to further spinal cord tissue damage. Several preclinical and clinical studies have highlighted the ability of stem cell therapy to improve long-term fun...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2857

    authors: Mammana S,Gugliandolo A,Cavalli E,Diomede F,Iori R,Zappacosta R,Bramanti P,Conti P,Fontana A,Pizzicannella J,Mazzon E

    更新日期:2019-07-01 00:00:00

  • Comparison of advanced therapy medicinal product gingiva and skin substitutes and their in vitro wound healing potentials.

    abstract::Skin and oral mucosa substitutes are a therapeutic option for closing hard-to-heal skin and oral wounds. Our aim was to develop bi-layered skin and gingiva substitutes, from 3 mm diameter biopsies, cultured under identical conditions, which are compliant with current European regulations for advanced therapy medicinal...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2438

    authors: Boink MA,Roffel S,Breetveld M,Thon M,Haasjes MSP,Waaijman T,Scheper RJ,Blok CS,Gibbs S

    更新日期:2018-02-01 00:00:00

  • Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.

    abstract::This study reports the manufacturing process of 3D interconnected macroporous tricalcium phosphate (TCP) scaffolds with controlled internal architecture by direct 3D printing (3DP), and high mechanical strength obtained by microwave sintering. TCP scaffolds with 27%, 35% and 41% designed macroporosity with pore sizes ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.555

    authors: Tarafder S,Balla VK,Davies NM,Bandyopadhyay A,Bose S

    更新日期:2013-08-01 00:00:00

  • Novel method for the isolation of adipose stem cells (ASCs).

    abstract::Adipose stem cells (ASCs) represent a cell population with great potential for tissue engineering applications. Several articles have been published showing the proliferation and differentiation potential, the markers and the wide range of potential applications of these cells. In the majority of these studies the ASC...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.141

    authors: Rada T,Reis RL,Gomes ME

    更新日期:2009-02-01 00:00:00

  • In vitro platforms for tissue engineering: implications for basic research and clinical translation.

    abstract::Clinical translation of engineered tissues into regenerative medicine applications, and the effort to reduce the use of animals for the screening of drugs and other compounds, result in an increasing demand for human tissues engineered in vitro for implantation, in vitro screening systems and basic research. Further d...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章,评审

    doi:10.1002/term.414

    authors: Rouwkema J,Gibbs S,Lutolf MP,Martin I,Vunjak-Novakovic G,Malda J

    更新日期:2011-08-01 00:00:00