Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin.

Abstract:

:Biodegradable PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles containing insulin phospholipid complex were loaded in chitosan-based thermosensitive hydrogels for long-term sustained and controlled delivery of insulin. The injectable hydrogels, prepared by adding β-glycerophosphate disodium salt (GP) solution to chitosan (CS) solution under stirring, showed a rapid solution-to-gel transition at 37 °C, a porous structure and a comparative degradation and swelling rate in vitro. In the in vitro release studies, only 19.11% of total insulin was released from the nanoparticle-loaded hydrogel (NP-CS/GP) within 31 days. However, 96.41% of total insulin was released from the free insulin-loaded hydrogel (INS-CS/GP) within 16 days. Most importantly, the hypoglycemic effect of NP-CS/GP following subcutaneous injection in diabetic rats lasted for >5 days, much longer than the effect caused by INS-CS/GP or other long-acting insulin formulations. The pharmacological availability of NP-CS/GP relative to INS-CS/GP was 379.85%, indicating that the bioavailability of insulin was significantly enhanced by NP-CS/GP gels. Therefore, biodegradable and thermosensitive NP-CS/GP gels have great potential for use in novel ultralong-acting insulin injections. In addition, the NP-loaded hydrogel system also paves the way for long-term delivery of other proteins and peptides.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Peng Q,Sun X,Gong T,Wu CY,Zhang T,Tan J,Zhang ZR

doi

10.1016/j.actbio.2012.09.034

subject

Has Abstract

pub_date

2013-02-01 00:00:00

pages

5063-9

issue

2

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(12)00471-0

journal_volume

9

pub_type

杂志文章
  • Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity.

    abstract::Spherical bioactive glass 13-93 particles, with a particle size distribution of 50-125 microm, were combined with bioabsorbable poly-L,DL-lactide 70/30 using twin-screw extrusion. The composite rods containing 0, 20, 30, 40 and 50 wt% of bioactive glass were further self-reinforced by drawing to a diameter of approxim...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2004.11.002

    authors: Niemelä T,Niiranen H,Kellomäki M,Törmälä P

    更新日期:2005-03-01 00:00:00

  • Selection of extraction medium influences cytotoxicity of zinc and its alloys.

    abstract::Zinc (Zn) alloys have been considered as promising absorbable metals, mainly due to their moderate degradation rates ranging between magnesium alloys and iron alloys. The degradation behavior depends on the specific physiological environment. Released metallic ions and corrosion products directly influence biocompatib...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.03.013

    authors: Li P,Schille C,Schweizer E,Kimmerle-Müller E,Rupp F,Heiss A,Legner C,Klotz UE,Geis-Gerstorfer J,Scheideler L

    更新日期:2019-10-15 00:00:00

  • Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating.

    abstract::Vocal fold lamina propria extracellular matrix (ECM) is highly aligned and when injured, becomes disorganized with loss of the tissue's critical biomechanical properties. This study examines the effects of electrospun fiber scaffold architecture and elastin-like polypeptide (ELP4) coating on human vocal fold fibroblas...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.10.039

    authors: Hughes LA,Gaston J,McAlindon K,Woodhouse KA,Thibeault SL

    更新日期:2015-02-01 00:00:00

  • Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials.

    abstract::The development of vascular grafts has focused on finding a biomaterial that is non-thrombogenic, minimizes intimal hyperplasia, matches the mechanical properties of native vessels and allows for regeneration of arterial tissue. In this study, the structural and mechanical properties and the vascular cell compatibilit...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.08.001

    authors: McKenna KA,Hinds MT,Sarao RC,Wu PC,Maslen CL,Glanville RW,Babcock D,Gregory KW

    更新日期:2012-01-01 00:00:00

  • Self-assembling peptide amphiphile nanofiber matrices for cell entrapment.

    abstract::We have developed a class of peptide amphiphile (PA) molecules that self-assemble into three-dimensional nanofiber networks under physiological conditions in the presence of polyvalent metal ions. The assembly can be triggered by adding PA solutions to cell culture media or other synthetic physiological fluids contain...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2005.04.002

    authors: Beniash E,Hartgerink JD,Storrie H,Stendahl JC,Stupp SI

    更新日期:2005-07-01 00:00:00

  • Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos.

    abstract::The aim of the present study was to evaluate the biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds using a chick embryo shell-less (ex ovo) culture system. Chick embryos were divided into two groups: control (C) and experimental (E). Scaffolds were placed on the chorio...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.07.016

    authors: Vargas GE,Mesones RV,Bretcanu O,López JM,Boccaccini AR,Gorustovich A

    更新日期:2009-01-01 00:00:00

  • Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability.

    abstract::A biphasic layer with a Zn-containing beta-tricalcium phosphate (ZnTCP) phase and a fluoridated hydroxyapatite (FHA) phase on titanium alloy substrate was prepared by the sol-gel technique. Scanning electron microscopy and energy-dispersive X-ray analysis results showed the ZnTCP/FHA layer to have a heterogeneous surf...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.08.013

    authors: Miao S,Cheng K,Weng W,Du P,Shen G,Han G,Yan W,Zhang S

    更新日期:2008-03-01 00:00:00

  • Functional role of glycosaminoglycans in decellularized lung extracellular matrix.

    abstract::Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in dec...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.11.029

    authors: Uhl FE,Zhang F,Pouliot RA,Uriarte JJ,Rolandsson Enes S,Han X,Ouyang Y,Xia K,Westergren-Thorsson G,Malmström A,Hallgren O,Linhardt RJ,Weiss DJ

    更新日期:2020-01-15 00:00:00

  • Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation.

    abstract::This paper presents an experimental investigation and evidence of rate-dependency in the planar mechanical behaviour of semilunar heart valves. Samples of porcine aortic and pulmonary valves were subjected to biaxial deformations across 1000-fold stretch rate, ranging from λ̇=0.001 to 1 s-1. The experimental campaign ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.02.008

    authors: Anssari-Benam A,Tseng YT,Holzapfel GA,Bucchi A

    更新日期:2019-04-01 00:00:00

  • Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis.

    abstract::Cardiac fibrosis, an important pathological feature of structural remodeling, contributes to ventricular stiffness, diastolic dysfunction, arrhythmia and may even lead to sudden death. Matrix stiffness, one of the many mechanical factors acting on cells, is increasingly appreciated as an important mediator of myocardi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.01.031

    authors: Xie J,Zhang Q,Zhu T,Zhang Y,Liu B,Xu J,Zhao H

    更新日期:2014-06-01 00:00:00

  • Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    abstract:UNLABELLED:Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.01.023

    authors: Koenig G,Ozcelik H,Haesler L,Cihova M,Ciftci S,Dupret-Bories A,Debry C,Stelzle M,Lavalle P,Vrana NE

    更新日期:2016-03-01 00:00:00

  • A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis.

    abstract::Natural polymer materials have attracted great attention in the field of hemostasis because of their wide range of source, nontoxicity, hydrophilicity, and air permeability. In the present study, two natural polymers composed of carboxymethyl chitosan (CMCS) and sodium carboxymethylcellulose (CMCNa) plus γ-(2,3-epoxyp...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.07.043

    authors: Wang L,Zhong Y,Qian C,Yang D,Nie J,Ma G

    更新日期:2020-09-15 00:00:00

  • Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    abstract::Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.11.002

    authors: Li Z,Qu T,Ding C,Ma C,Sun H,Li S,Liu X

    更新日期:2015-02-01 00:00:00

  • Eluted 25-hydroxyvitamin D3 from radially aligned nanofiber scaffolds enhances cathelicidin production while reducing inflammatory response in human immune system-engrafted mice.

    abstract::Vitamin D3 modulates immune response, induces endogenous antimicrobial peptide production, and enhances innate immunity to defend against infections. These findings suggest that incorporating vitamin D3 into medical devices or scaffolds could positively modulate host immune response and prevent infections. In the curr...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.08.005

    authors: Chen S,Ge L,Wang H,Cheng Y,Gorantla S,Poluektova LY,Gombart AF,Xie J

    更新日期:2019-10-01 00:00:00

  • In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects.

    abstract::The easy clinical handling and applicability of biomaterials has become a focus of materials research due to rapidly increasing time and cost pressures in the public health sector. The present study assesses the in vitro and in vivo performance of a flexible, mouldable, cottonwool-like nanocomposite based on poly(lact...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.11.030

    authors: Schneider OD,Weber F,Brunner TJ,Loher S,Ehrbar M,Schmidlin PR,Stark WJ

    更新日期:2009-06-01 00:00:00

  • Quantum dots in biomedical applications.

    abstract::Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2019.05.022

    authors: Wagner AM,Knipe JM,Orive G,Peppas NA

    更新日期:2019-08-01 00:00:00

  • Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder.

    abstract::One of the challenges of using bioactive bone cements is adjusting their handling properties for clinical application. To resolve the poorer handling properties of bioactive bone cements we developed a novel bioactive bone cement containing a unique polymethylmethacrylate (PMMA) powder, termed SPD-PMMA (40 μm in diame...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.06.006

    authors: Fukuda C,Goto K,Imamura M,Neo M,Nakamura T

    更新日期:2011-10-01 00:00:00

  • Responsive hydrogels produced via organic sol-gel chemistry for cell culture applications.

    abstract::In this study, we report the synthesis of novel environmentally responsive polyurea hydrogel networks prepared via organic sol-gel chemistry and demonstrate that the networks can stabilize pH while releasing glucose both in simple aqueous media and in mammalian cell culture settings. Hydrogel formulations have been de...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.04.040

    authors: Patil S,Chaudhury P,Clarizia L,McDonald M,Reynaud E,Gaines P,Schmidt DF

    更新日期:2012-08-01 00:00:00

  • Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway.

    abstract::Vascular stiffening is associated with the prognosis of cardiovascular disease (CVD). Endothelial dysfunction, as shown by reduced vasodilation and increased vasoconstriction, not only affects vascular tone, but also accelerates the progression of CVD. However, the precise effect of vascular stiffening on endothelial ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.10.013

    authors: Song X,Sun Z,Chen G,Shang P,You G,Zhao J,Liu S,Han D,Zhou H

    更新日期:2019-12-01 00:00:00

  • A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    abstract::Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegrad...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.08.047

    authors: Yang Y,Liu X,Li Y,Wang Y,Bao C,Chen Y,Lin Q,Zhu L

    更新日期:2017-10-15 00:00:00

  • Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices.

    abstract::Extracellular matrix is a key component of many products in regenerative medicine. Multiple regenerative medicine products currently in the clinic are comprised of human or xenogeneic extracellular matrix. In addition, whole-organ regeneration exploits decellularized native organs as scaffolds for organotypic cell cul...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.09.043

    authors: Calle EA,Hill RC,Leiby KL,Le AV,Gard AL,Madri JA,Hansen KC,Niklason LE

    更新日期:2016-12-01 00:00:00

  • Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold.

    abstract::The use of biodegradable beta-tricalcium phosphate (β-TCP) scaffolds holds great promise for bone tissue engineering. However, the effects of β-TCP on bone and endothelial cells are not fully understood. This study aimed to investigate cell proliferation and differentiation of mono- or co-cultured human-bone-marrow-de...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.08.008

    authors: Kang Y,Kim S,Fahrenholtz M,Khademhosseini A,Yang Y

    更新日期:2013-01-01 00:00:00

  • Block copolymer of poly(ester amide) and polyesters: synthesis, characterization, and in vitro cellular response.

    abstract::In order to expand the properties and applications of aliphatic absorbable polyesters, a new biodegradable block copolymer family, poly(ester amide)-b-poly(ε-caprolactone) (PEA-b-PCL), was synthesized and characterized. These copolymers were synthesized by first preparing l-phenylalanine-based poly(ester amide) macroi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.07.027

    authors: Wu J,Chu CC

    更新日期:2012-12-01 00:00:00

  • An overview of thin film nitinol endovascular devices.

    abstract::Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-pr...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2015.03.025

    authors: Shayan M,Chun Y

    更新日期:2015-07-01 00:00:00

  • Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats.

    abstract::Human embryonic stem cells (hESCs) are an exciting cell source as they offer an unlimited supply of cells that can differentiate into all cell types for regenerative medicine applications. To date, there has been no report on hESCs with calcium phosphate cement (CPC) scaffolds for bone regeneration in vivo. The object...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.06.027

    authors: Liu X,Wang P,Chen W,Weir MD,Bao C,Xu HH

    更新日期:2014-10-01 00:00:00

  • Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.

    abstract::Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature,...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.02.003

    authors: Wang Z,Zhang H,Chu AJ,Jackson J,Lin K,Lim CJ,Lange D,Chiao M

    更新日期:2018-04-01 00:00:00

  • Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31.

    abstract::The application of biodegradable magnesium-based materials in the biomedical field is highly restricted by their low fatigue strength and high corrosion rate in biological environments. Herein, we treated the surface of a biocompatible magnesium alloy AZ31 by severe shot peening in order to evaluate the potential of s...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.11.032

    authors: Bagherifard S,Hickey DJ,Fintová S,Pastorek F,Fernandez-Pariente I,Bandini M,Webster TJ,Guagliano M

    更新日期:2018-01-15 00:00:00

  • An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis.

    abstract::Cartilage lacks basic repair mechanisms and thus surgical interventions are necessary to treat lesions. Minimally-invasive arthroscopic procedures require the development of injectable biomaterials to support chondrogenesis of implanted cells. However, most cartilage tissue engineering approaches rely on pre-culture o...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.09.017

    authors: Levinson C,Lee M,Applegate LA,Zenobi-Wong M

    更新日期:2019-11-01 00:00:00

  • Production of highly aligned collagen lamellae by combining shear force and thin film confinement.

    abstract::Load-bearing tissues owe their mechanical strength to their highly anisotropic collagenous structure. To date attempts to engineer mechanically strong connective tissue have failed, mainly due to a lack of ability to reproduce the native collagen organization in constructs synthesized by cultured cells in vitro. The a...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.02.038

    authors: Saeidi N,Sander EA,Zareian R,Ruberti JW

    更新日期:2011-06-01 00:00:00

  • Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery.

    abstract:UNLABELLED:To improve the ocular bioavailability of the model drug of pirenoxine sodium (PRN), organic-inorganic hybrid nanocomposites including layered double hydroxides (LDH) and chitosan derivatives (chitosan-glutathione (CG), chitosan-glutathione-valine (CG-V) and chitosan-glutathione-valine-valine (CG-VV)) were de...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.02.041

    authors: Xu T,Zhang J,Chi H,Cao F

    更新日期:2016-05-01 00:00:00