Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds.

Abstract:

:Mesenchymal stem cells (MSCs) have been suggested as a potential cell source for tendon/ligament tissue engineering. Extrinsic cues, such as the chemical and physical properties of scaffolds, as well as external forces, play an important role in fibroblastic differentiation of these cells. In this study, we employed a collagen-fibre scaffold that mimics the chemical and fibrous structure and mechanical properties of tendon/ligament, and studied how imparting cyclic tension to these fibrous collagen scaffolds affects tendon/ligament fibroblastic differentiation of MSCs. Human MSCs attached and spread on the surface of the scaffolds, and appeared aligned along the fibres 24 h after seeding. Cyclic tension was then applied to cell-laden scaffolds over a period of 14 days (10% strain, 1 Hz, 3 h on/3 h off). Real time RT-PCR analysis indicated that scleraxis, a transcription factor associated with the tendon fibroblast phenotype, was found to be significantly upregulated only under cyclic tension. Immunohistochemical staining demonstrated that MSCs cultured under cyclic tension after 14 days secreted more extracellular matrix, including collagen I, collagen III and tenascin-C, compared to constructs in static culture, after 14 days in vitro. Our data indicate that cyclic tension can promote fibroblastic differentiation of MSCs in these fibrous collagen-based scaffolds, which may have significant applications in the development of tissue-engineered graft alternatives for tendon and ligament injuries. Copyright © 2014 John Wiley & Sons, Ltd.

journal_name

J Tissue Eng Regen Med

authors

Qiu Y,Lei J,Koob TJ,Temenoff JS

doi

10.1002/term.1880

subject

Has Abstract

pub_date

2016-12-01 00:00:00

pages

989-999

issue

12

eissn

1932-6254

issn

1932-7005

journal_volume

10

pub_type

杂志文章
  • Generation of tunable glycosaminoglycan hydrogels to mimic extracellular matrices.

    abstract::Biomaterials and, especially, scaffolds may function as temporary extracellular matrix (ECM), mimicking in vivo environmental structures and facilitating cell growth and tissue regeneration. ECM is composed mostly of glycosaminoglycans (GAGs) and proteins, the ratio of GAGs, hyaluronic acid (HA):sulphated GAGs (sGAGs)...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1883

    authors: Herrero-Mendez A,Palomares T,Castro B,Herrero J,Alonso-Varona A

    更新日期:2016-12-01 00:00:00

  • Boron nitride nanotube-functionalised myoblast/microfibre constructs: a nanotech-assisted tissue-engineered platform for muscle stimulation.

    abstract::In this communication, we introduce boron nitride nanotube (BNNT)-functionalised muscle cell/microfibre mesh constructs, obtained via tissue engineering, as a three-dimensional (3D) platform to study a wireless stimulation system for electrically responsive cells and tissues. Our stimulation strategy exploits the piez...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1878

    authors: Danti S,Ciofani G,Pertici G,Moscato S,D'Alessandro D,Ciabatti E,Chiellini F,D'Acunto M,Mattoli V,Berrettini S

    更新日期:2015-07-01 00:00:00

  • Novel method for the isolation of adipose stem cells (ASCs).

    abstract::Adipose stem cells (ASCs) represent a cell population with great potential for tissue engineering applications. Several articles have been published showing the proliferation and differentiation potential, the markers and the wide range of potential applications of these cells. In the majority of these studies the ASC...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.141

    authors: Rada T,Reis RL,Gomes ME

    更新日期:2009-02-01 00:00:00

  • In situ handheld three-dimensional bioprinting for cartilage regeneration.

    abstract::Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ three-dimensional (3D) printing is an exciting and innovative biofabrication technology that enables the surgeon to deliver tissue-engineering techniques at the time and location of need. We ha...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2476

    authors: Di Bella C,Duchi S,O'Connell CD,Blanchard R,Augustine C,Yue Z,Thompson F,Richards C,Beirne S,Onofrillo C,Bauquier SH,Ryan SD,Pivonka P,Wallace GG,Choong PF

    更新日期:2018-03-01 00:00:00

  • Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    abstract::Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffold...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.499

    authors: Rodrigues MT,Martins A,Dias IR,Viegas CA,Neves NM,Gomes ME,Reis RL

    更新日期:2012-11-01 00:00:00

  • Spatial distribution and survival of human and goat mesenchymal stromal cells on hydroxyapatite and β-tricalcium phosphate.

    abstract::The combination of scaffolds and mesenchymal stromal cells (MSCs) is a promising approach in bone tissue engineering (BTE). Knowledge on the survival, outgrowth and bone-forming capacity of MSCs in vivo is limited. Bioluminescence imaging (BLI), histomorphometry and immunohistochemistry were combined to study the fate...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1681

    authors: Prins HJ,Fernandes H,Rozemuller H,van Blitterswijk C,de Boer J,Martens AC

    更新日期:2016-03-01 00:00:00

  • Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine?

    abstract::Regenerative medicine aims to replace lost cells and to restore damaged tissues and organs by either tissue-engineering approaches or stimulation of endogenous processes. Due to their biological properties, stem cells promise to be an effective source for such strategies. Especially adult multipotent stem cells (ASCs)...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章,评审

    doi:10.1002/term.1923

    authors: Reinke S,Dienelt A,Blankenstein A,Duda GN,Geissler S

    更新日期:2016-01-01 00:00:00

  • Precision cell delivery in biphasic polymer systems enhances growth of keratinocytes in culture and promotes their attachment on acellular dermal matrices.

    abstract::Current approaches for precision deposition of cells are not optimized for moist environments or for substrates with complex surface topographic features, for example, the surface of dermal matrices and other biomaterials. To overcome these challenges, an approach is presented that utilizes cell confinement in phase-s...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2845

    authors: Agarwal R,Liu G,Tam NW,Gratzer PF,Frampton JP

    更新日期:2019-06-01 00:00:00

  • Human osteoarthritic chondrons outnumber patient- and joint-matched chondrocytes in hydrogel culture-Future application in autologous cell-based OA cartilage repair?

    abstract::Autologous chondrocyte implantation (ACI) is used in 34-60% for osteoarthritic (OA) cartilage defects, although ACI is neither recommended nor designed for OA. Envisioning a hydrogel-based ACI for OA that uses chondrons instead of classically used chondrocytes, we hypothesized that human OA chondrons may outperform OA...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2516

    authors: Rothdiener M,Uynuk-Ool T,Südkamp N,Aurich M,Grodzinsky AJ,Kurz B,Rolauffs B

    更新日期:2018-02-01 00:00:00

  • In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber.

    abstract::In orthopaedic medicine, connective tissues are often affected by traumatic or degenerative injuries, and surgical intervention is required. Rotator cuff tears are a common cause of shoulder pain and disability among adults. The development of graft materials for bridging the gap between tendon and bone after chronic ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2868

    authors: Gniesmer S,Brehm R,Hoffmann A,de Cassan D,Menzel H,Hoheisel AL,Glasmacher B,Willbold E,Reifenrath J,Wellmann M,Ludwig N,Tavassol F,Zimmerer R,Gellrich NC,Kampmann A

    更新日期:2019-07-01 00:00:00

  • Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications.

    abstract::Many studies have highlighted the role of silicon in human bone formation and maintenance. Silicon, in fact, is considered to nucleate the precipitation of hydroxyapatite and to reduce the bone resorption. For this reason, we have combined silk fibroin (SF) with silicon-releasing diatom particles (DPs), as potential m...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2373

    authors: Le TDH,Liaudanskaya V,Bonani W,Migliaresi C,Motta A

    更新日期:2018-01-01 00:00:00

  • The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering.

    abstract::Heart valve replacement is often the only solution for patients suffering from valvular heart disease. However, currently available valve replacements require either life-long anticoagulation or are associated with valve degeneration and calcification. Moreover, they are suboptimal for young patients, because they do ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章,评审

    doi:10.1002/term.2326

    authors: Fioretta ES,Dijkman PE,Emmert MY,Hoerstrup SP

    更新日期:2018-01-01 00:00:00

  • Morphological transformation of hBMSC from 2D monolayer to 3D microtissue on low-crystallinity SF-PCL patch with promotion of cardiomyogenesis.

    abstract::The effects of the stiffness of substrates on the cell behaviours of human bone marrow-derived mesenchymal stem cells (hBMSC) have been investigated, but the effects of the secondary structures of proteins in the substrates on the morphological transformation and differentiation of hBMSC have yet been elucidated. To i...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2616

    authors: Lo HY,Huang AL,Lee PC,Chung TW,Wang SS

    更新日期:2018-04-01 00:00:00

  • A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation.

    abstract::Cardiac stem cells (CSCs) represent a logical cell type to exploit as a regenerative treatment option for tissue damage accrued as a result of a myocardial infarction. However, the isolation and expansion of CSCs prior to cell transplantation is time consuming, costly and invasive, and the reliability of cell expansio...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2392

    authors: O'Neill HS,O'Sullivan J,Porteous N,Ruiz-Hernandez E,Kelly HM,O'Brien FJ,Duffy GP

    更新日期:2018-01-01 00:00:00

  • Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.

    abstract::The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1848

    authors: Kiziltay A,Marcos-Fernandez A,San Roman J,Sousa RA,Reis RL,Hasirci V,Hasirci N

    更新日期:2015-08-01 00:00:00

  • Delivering stem cells to the healthy heart on biological sutures: effects on regional mechanical function.

    abstract::Current cardiac cell therapies cannot effectively target and retain cells in a specific area of the heart. Cell-seeded biological sutures were previously developed to overcome this limitation, demonstrating targeted delivery with > 60% cell retention. In this study, both cell-seeded and non-seeded fibrin-based biologi...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.1904

    authors: Tao ZW,Favreau JT,Guyette JP,Hansen KJ,Lessard J,Burford E,Pins GD,Gaudette GR

    更新日期:2017-01-01 00:00:00

  • Enhancement of bone regeneration with the accordion technique via HIF-1α/VEGF activation in a rat distraction osteogenesis model.

    abstract::Axial micromotion of bone fragments promotes callus formation and bone healing during the process of distraction osteogenesis (DO). This study investigated the effects of the combined axial compression and distraction (accordion) technique on bone regeneration in rat DO model. Male Sprague-Dawley rats (n = 62) underwe...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2534

    authors: Xu J,Sun Y,Wu T,Liu Y,Shi L,Zhang J,Kang Q,Chai Y,Li G

    更新日期:2018-02-01 00:00:00

  • High-fat diet selectively decreases bone marrow lin- /CD117+ cell population in aging mice through increased ROS production.

    abstract::Bone marrow (BM) stem cells (BMSCs) are an important source for cell therapy. The outcome of cell therapy could be ultimately associated with the number and function of donor BMSCs. The present study was to evaluate the effect of long-term high-fat diet (HFD) on the population of BMSCs and the role of reactive oxygen ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.3047

    authors: Xiao Y,Zhu Q,Liu X,Jiang M,Hao H,Zhu H,Cowan PJ,He X,Liu Q,Zhou S,Liu Z

    更新日期:2020-06-01 00:00:00

  • A novel automated cell-seeding device for tissue engineering of tubular scaffolds: design and functional validation.

    abstract::Obtaining an efficient, uniform and reproducible cell seeding of porous tubular scaffolds constitutes a major challenge for the successful development of tissue-engineered vascular grafts. In this study, a novel automated cell-seeding device utilizing direct cell deposition, patterning techniques and scaffold rotation...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.476

    authors: Mohebbi-Kalhori D,Rukhlova M,Ajji A,Bureau M,Moreno MJ

    更新日期:2012-10-01 00:00:00

  • Mesenchymal stem cells: Cell therapy and regeneration potential.

    abstract::Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peri...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章,评审

    doi:10.1002/term.2914

    authors: Brown C,McKee C,Bakshi S,Walker K,Hakman E,Halassy S,Svinarich D,Dodds R,Govind CK,Chaudhry GR

    更新日期:2019-09-01 00:00:00

  • Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters.

    abstract::The ability to control facial skin physiology and appearance through the oral mucosa (transbuccally) is largely unexplored. Here, a hypothesis was tested that transbuccal delivery of fat tissue-supportive actives may trigger beneficial cosmetic responses at the level of the skin. First, the importance of the fat tissu...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type:

    doi:10.1002/term.3087

    authors: Bojanowski K,Ma S,Applebaum R,Zhao H

    更新日期:2020-08-01 00:00:00

  • Phenotype-based selection of bone marrow mesenchymal stem cell-derived smooth muscle cells for elastic matrix regenerative repair in abdominal aortic aneurysms.

    abstract::Chronic proteolytic disruption of elastic fibres within the abdominal aortic wall results in wall vessel expansion to form rupture-prone abdominal aortic aneurysms (AAA). Arresting AAA growth is not possible as adult vascular smooth muscle cells (SMCs) poorly auto-regenerate and repair elastic fibres. Thus, there is a...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2349

    authors: Swaminathan G,Stoilov I,Broekelmann T,Mecham R,Ramamurthi A

    更新日期:2018-01-01 00:00:00

  • Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis.

    abstract::The regeneration and establishment of osseointegration within oral peri-implant bone defects remains a clinical challenge. Bone tissue engineering (BTE) is emerging as a promising alternative to autogenous and/or biomaterial-based bone grafting. The objective of this systematic review was to answer the focused questio...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章,meta分析,评审

    doi:10.1002/term.2412

    authors: Shanbhag S,Pandis N,Mustafa K,Nyengaard JR,Stavropoulos A

    更新日期:2018-01-01 00:00:00

  • EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface.

    abstract::Tissue-engineering strategies may be employed in the development of in vitro breast tissue models for use in testing regimens of drug therapies and vaccines. The physical and chemical interactions that occur among cells and extracellular matrix components can also be elucidated with these models to gain an understandi...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.162

    authors: Parzel CA,Pepper ME,Burg T,Groff RE,Burg KJ

    更新日期:2009-06-01 00:00:00

  • Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.

    abstract::This study reports the manufacturing process of 3D interconnected macroporous tricalcium phosphate (TCP) scaffolds with controlled internal architecture by direct 3D printing (3DP), and high mechanical strength obtained by microwave sintering. TCP scaffolds with 27%, 35% and 41% designed macroporosity with pore sizes ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.555

    authors: Tarafder S,Balla VK,Davies NM,Bandyopadhyay A,Bose S

    更新日期:2013-08-01 00:00:00

  • Rapid treatment of full-thickness skin loss using ovine tendon collagen type I scaffold with skin cells.

    abstract::The full-thickness skin wound is a common skin complication affecting millions of people worldwide. Delayed treatment of this condition causes the loss of skin function and integrity that could lead to the development of chronic wounds or even death. This study was aimed to develop a rapid wound treatment modality usi...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2842

    authors: Mh Busra F,Rajab NF,Tabata Y,Saim AB,B H Idrus R,Chowdhury SR

    更新日期:2019-05-01 00:00:00

  • A comparison study of different decellularization treatments on bovine articular cartilage.

    abstract::Previous researches have emphasized on suitability of decellularized tissues for regenerative applications. The decellularization of cartilage tissue has always been a challenge as the final product must be balanced in both immunogenic residue and mechanical properties. This study was designed to compare and optimize ...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2936

    authors: Ghassemi T,Saghatoleslami N,Mahdavi-Shahri N,Matin MM,Gheshlaghi R,Moradi A

    更新日期:2019-10-01 00:00:00

  • Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation.

    abstract::In this study, clinoptilolite (CLN) was employed as a reinforcement in a polymer-based composite scaffold in bone tissue engineering and evaluated in vivo for the first time. Highly porous, mechanically stable, and osteogenic CLN/PCL-PEG-PCL (CLN/PCEC) scaffolds were fabricated with modified particulate leaching/compr...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.2938

    authors: Pazarçeviren AE,Dikmen T,Altunbaş K,Yaprakçı V,Erdemli Ö,Keskin D,Tezcaner A

    更新日期:2020-01-01 00:00:00

  • Three-dimensional culture of mouse bone marrow cells within a porous polymer scaffold: effects of oxygen concentration and stromal layer on expansion of haematopoietic progenitor cells.

    abstract::To establish an ex vivo expansion method of haematopoietic progenitor cells (HPCs) and erythroid cells, three-dimensional (3D) cultures of mouse bone marrow cells were performed, employing a porous polyvinyl formal (PVF) resin as a scaffold. In these cultures, the effects of oxygen concentration and co-cultures with s...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.295

    authors: Miyoshi H,Murao M,Ohshima N,Tun T

    更新日期:2011-02-01 00:00:00

  • Characterization of human cultured periosteal sheets expressing bone-forming potential: in vitro and in vivo animal studies.

    abstract::Our recent clinical studies have demonstrated that autologous implantation of human cultured periosteal (hCP) sheets in combination with porous hydroxylapatite (HAp) particles at the site of periodontal bone defects strikingly facilitates tissue regeneration. To better understand how the hCP sheet functions at the imp...

    journal_title:Journal of tissue engineering and regenerative medicine

    pub_type: 杂志文章

    doi:10.1002/term.156

    authors: Kawase T,Okuda K,Kogami H,Nakayama H,Nagata M,Nakata K,Yoshie H

    更新日期:2009-03-01 00:00:00