Many Shades of Grey in Botrytis-Host Plant Interactions.

Abstract:

:The grey mould Botrytis cinerea causes disease in more than 1000 plant species, including important crops. The interaction between Botrytis and its (potential) hosts is determined by quantitative susceptibility and virulence traits in both interacting partners, resulting in a greyscale of disease outcomes. Fungal infection was long thought to rely mainly on its capacity to kill the host plant and degrade plant tissue. Recent research has revealed that Botrytis exploits two crucial biological processes in host plants for its own success. We highlight recent findings that illustrate that the interactions between Botrytis and its host plants are subtle and we discuss the molecular and cellular mechanisms controlling the many shades of grey during these interactions.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Veloso J,van Kan JAL

doi

10.1016/j.tplants.2018.03.016

subject

Has Abstract

pub_date

2018-07-01 00:00:00

pages

613-622

issue

7

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(18)30084-0

journal_volume

23

pub_type

杂志文章,评审
  • Short on phosphate: plant surveillance and countermeasures.

    abstract::Metabolism depends on inorganic phosphate (P(i)) as reactant, allosteric effector and regulatory moiety in covalent protein modification. To cope with P(i) shortage (a common situation in many ecosystems), plants activate a set of adaptive responses to enhance P(i) recycling and acquisition by reprogramming metabolism...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.09.003

    authors: Ticconi CA,Abel S

    更新日期:2004-11-01 00:00:00

  • Sorting of proteins to storage vacuoles: how many mechanisms?

    abstract::Vacuoles receive their proteins through the secretory pathway, this requires protein sorting signals and molecular machineries that, until recently, have been believed to be markedly distinct for lytic and storage vacuoles. However, new biochemical, morphological and genetic data indicate that the only known class of ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.05.001

    authors: Vitale A,Hinz G

    更新日期:2005-07-01 00:00:00

  • Biofortification for combating 'hidden hunger' for iron.

    abstract::Micronutrient deficiencies are responsible for so-called 'hidden undernutrition'. In particular, iron (Fe) deficiency adversely affects growth, immune function and can cause anaemia. However, supplementation of iron can exacerbate infectious diseases and current policies of iron therapy carefully evaluate the risks an...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2011.10.003

    authors: Murgia I,Arosio P,Tarantino D,Soave C

    更新日期:2012-01-01 00:00:00

  • MicroProteins: small size-big impact.

    abstract::MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characteristics of a miP. In this ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.05.011

    authors: Eguen T,Straub D,Graeff M,Wenkel S

    更新日期:2015-08-01 00:00:00

  • Green or red: what stops the traffic in the tetrapyrrole pathway?

    abstract::Regulation of tetrapyrrole biosynthesis is crucial to plant metabolism. The two pivotal control points are formation of the initial precursor, 5-aminolaevulinic acid (ALA), and the metal-ion insertion step: chelation of Fe(2+) into protoporphyrin IX leads to haem and phytochromobilin, whereas insertion of Mg(2+) is th...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/S1360-1385(03)00064-5

    authors: Cornah JE,Terry MJ,Smith AG

    更新日期:2003-05-01 00:00:00

  • Cutting edge of chloroplast proteolysis.

    abstract::Chloroplasts have a dynamic protein environment and, although proteases are presumably major contributors, the identities of these crucial regulatory proteins have only recently been revealed. There are defined proteases within each of the major chloroplast compartments: the ATP-dependent Clp and FtsH proteases in the...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(02)02326-9

    authors: Adam Z,Clarke AK

    更新日期:2002-10-01 00:00:00

  • Carotenoid sequestration in plants: the role of carotenoid-associated proteins.

    abstract::In plants, carotenoid accumulation and sequestration take place within chloroplasts and chromoplasts. In the chloroplast, practically all carotenoids are associated with chlorophyll-binding proteins, whereas chromoplasts have developed a unique mechanism to sequester carotenoids within specific lipoprotein structures....

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01414-4

    authors: Vishnevetsky M,Ovadis M,Vainstein A

    更新日期:1999-06-01 00:00:00

  • Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

    abstract::The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging seque...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2019.05.003

    authors: Jung H,Winefield C,Bombarely A,Prentis P,Waterhouse P

    更新日期:2019-08-01 00:00:00

  • Source to sink: regulation of carotenoid biosynthesis in plants.

    abstract::Carotenoids are a diverse group of colourful pigments naturally found in plants, algae, fungi and bacteria. They play essential roles in development, photosynthesis, root-mycorrhizal interactions and the production of phytohormones, such as abscisic acid and strigolactone. Carotenoid biosynthesis is regulated througho...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.02.003

    authors: Cazzonelli CI,Pogson BJ

    更新日期:2010-05-01 00:00:00

  • How do plants respond to nutrient shortage by biomass allocation?

    abstract::Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long bee...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.10.007

    authors: Hermans C,Hammond JP,White PJ,Verbruggen N

    更新日期:2006-12-01 00:00:00

  • Waxy Editing: Old Meets New.

    abstract::The Waxy (Wx) gene that governs amylose synthesis is an old but widely used target in improving the quality of starchy crops. New genome-editing strategies are being deployed to create beneficial Wx alleles with finely tuned amylose content (AC). Precise targeting must be combined with traditional approaches to develo...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2020.07.009

    authors: Huang L,Sreenivasulu N,Liu Q

    更新日期:2020-10-01 00:00:00

  • Plant Flowering: Imposing DNA Specificity on Histone-Fold Subunits.

    abstract::CONSTANS (CO) is a master regulator of flowering time, although the mechanisms underlying its role as a transcriptional regulator are not well understood. The DNA-binding domain of CO shares homology with that of NUCLEAR FACTOR YA (NF-YA), a subunit of the CCAAT-binding trimer NF-Y. Recent publications indicate that C...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.12.005

    authors: Gnesutta N,Mantovani R,Fornara F

    更新日期:2018-04-01 00:00:00

  • Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death.

    abstract::Programmed cell death (PCD) is crucial in plant organogenesis and survival. In this review the involvement of mitochondria and chloroplasts in PCD execution is critically assessed. Recent findings support a central role for mitochondria in PCD, with newly identified components of the mitochondrial electron transport c...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.08.002

    authors: Van Aken O,Van Breusegem F

    更新日期:2015-11-01 00:00:00

  • Tall tales from sly dwarves: novel functions of gibberellins in plant development.

    abstract::Gibberellins (GAs) are endogenous hormones controlling numerous aspects of plant growth and development. Our present understanding of GA physiology is based largely on genetic analysis in model plants such as Arabidopsis. In spite of the success of this approach, the discovery of additional physiological roles for GAs...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.01.007

    authors: Swain SM,Singh DP

    更新日期:2005-03-01 00:00:00

  • The many functions of ERECTA.

    abstract::The Arabidopsis thaliana accession Landsberg erecta contains an induced mutation in the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA. Landsberg erecta is commonly used as a genetic background in mutant screens and in natural variation studies. Therefore, the erecta mutation is present in many loss-of-f...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2009.01.010

    authors: van Zanten M,Snoek LB,Proveniers MC,Peeters AJ

    更新日期:2009-04-01 00:00:00

  • Identification, isolation and pyramiding of quantitative trait loci for rice breeding.

    abstract::Many agronomically important traits are governed by several genes known as quantitative trait loci (QTLs). The identification of important, QTL-controlled agricultural traits has been difficult because of their complex inheritance; however, completion of the rice genomic sequence has facilitated the cloning of QTLs an...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.05.008

    authors: Ashikari M,Matsuoka M

    更新日期:2006-07-01 00:00:00

  • Aluminium tolerance in plants and the complexing role of organic acids.

    abstract::The aluminium cation Al(3+) is toxic to many plants at micromolar concentrations. A range of plant species has evolved mechanisms that enable them to grow on acid soils where toxic concentrations of Al(3+) can limit plant growth. Organic acids play a central role in these aluminium tolerance mechanisms. Some plants de...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(01)01961-6

    authors: Ma JF,Ryan PR,Delhaize E

    更新日期:2001-06-01 00:00:00

  • Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?

    abstract::A serious factor limiting the engineering of stress tolerance has been our ignorance about the function of stress-induced genes. A stress-activated novel aldose-aldehyde reductase was cloned from alfalfa. The ectopic expression of this gene in tobacco resulted in tolerance to oxidative stress and dehydration. Physiolo...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)01983-5

    authors: Bartels D

    更新日期:2001-07-01 00:00:00

  • Root-Apex Proton Fluxes at the Centre of Soil-Stress Acclimation.

    abstract::Proton (H+) fluxes in plant roots play critical roles in maintaining root growth and facilitating plant responses to multiple soil stresses, including fluctuations in nutrient supply, salt infiltration, and water stress. Soil mining for nutrients and water, rates of nutrient uptake, and the modulation of cell expansio...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2020.03.002

    authors: Siao W,Coskun D,Baluška F,Kronzucker HJ,Xu W

    更新日期:2020-08-01 00:00:00

  • How Does pH Fit in with Oscillating Polar Growth?

    abstract::Polar growth in root hairs and pollen tubes is an excellent model for investigating plant cell size regulation. While linear plant growth is historically explained by the acid growth theory, which considers that auxin triggers apoplastic acidification by activating plasma membrane P-type H+-ATPases (AHAs) along with c...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2018.02.008

    authors: Mangano S,Martínez Pacheco J,Marino-Buslje C,Estevez JM

    更新日期:2018-06-01 00:00:00

  • Making Roots, Shoots, and Seeds: IDD Gene Family Diversification in Plants.

    abstract::The INDETERMINATE DOMAIN (IDD) family of transcriptional regulators controls a diversity of processes in a variety of plant tissues and organs and at different stages of plant development. Several recent reports describe the genetic characterization of IDD family members, including those that are likely to regulate C4...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.09.008

    authors: Coelho CP,Huang P,Lee DY,Brutnell TP

    更新日期:2018-01-01 00:00:00

  • Plant salt tolerance.

    abstract::Soil salinity is a major abiotic stress in plant agriculture worldwide. This has led to research into salt tolerance with the aim of improving crop plants. However, salt tolerance might have much wider implications because transgenic salt-tolerant plants often also tolerate other stresses including chilling, freezing,...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(00)01838-0

    authors: Zhu JK

    更新日期:2001-02-01 00:00:00

  • Benefits of brassinosteroid crosstalk.

    abstract::Brassinosteroids (BRs) are a group of phytohormones that regulate various biological processes in plants. Interactions and crosstalk between BRs and other plant hormones control a broad spectrum of physiological and developmental processes. In this review, we examine recent findings which indicate that BR signaling co...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.05.012

    authors: Choudhary SP,Yu JQ,Yamaguchi-Shinozaki K,Shinozaki K,Tran LS

    更新日期:2012-10-01 00:00:00

  • When no means no: guide to Brassicaceae self-incompatibility.

    abstract::More than half of the flowering plants have a sophisticated mechanism for self-pollen rejection, named self-incompatibility (SI). In Brassicaceae, recognition specificity is achieved by the interaction of the stigmatic S-RECEPTOR KINASE (SRK) and its ligand S-LOCUS CYSTEINE-RICH PROTEIN (SCR). Recent years have seen s...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.04.010

    authors: Ivanov R,Fobis-Loisy I,Gaude T

    更新日期:2010-07-01 00:00:00

  • Role of death in providing lifeline to plants.

    abstract::As the major transporters and distributors of water and minerals, xylem vessels and tracheids are the lifeline of plants. Interestingly, the building blocks of these water pipes are dead tracheary elements and vessel elements that have the process of cell death integrated into their differentiation programme. Using th...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2003.08.003

    authors: Dahiya P

    更新日期:2003-10-01 00:00:00

  • Leveraging metabolomics for functional investigations in sequenced marine diatoms.

    abstract::Recent years have witnessed the genomic decoding of a wide range of photosynthetic organisms from the model plant Arabidopsis thaliana and the complex genomes of important crop species to single-celled marine phytoplankton. The comparative sequencing of green, red and brown algae has provided considerable insight into...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.005

    authors: Fernie AR,Obata T,Allen AE,Araújo WL,Bowler C

    更新日期:2012-07-01 00:00:00

  • Modification of DNA Checkpoints to Confer Aluminum Tolerance.

    abstract::Although aluminum (Al) toxicity represents a global agricultural problem, the biochemical targets for Al remain elusive. Recently identified Arabidopsis mutants with increased Al tolerance provide evidence of DNA as one of the main targets of Al. This insight could lead the way for novel strategies to generate Al-tole...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2016.12.003

    authors: Eekhout T,Larsen P,De Veylder L

    更新日期:2017-02-01 00:00:00

  • Paradoxical EU agricultural policies on genetically engineered crops.

    abstract::European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2013.03.004

    authors: Masip G,Sabalza M,Pérez-Massot E,Banakar R,Cebrian D,Twyman RM,Capell T,Albajes R,Christou P

    更新日期:2013-06-01 00:00:00

  • GUN1-Interacting Proteins Open the Door for Retrograde Signaling.

    abstract::Genomes Uncoupled 1 (GUN1) plays a critical role in various retrograde signaling pathways. Despite numerous studies, the precise molecular mechanism underlying GUN1-mediated retrograde signaling remains elusive. Recently, MORF2 and cpHSC70 have been identified as GUN1-interacting proteins, linking retrograde signaling...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2019.07.005

    authors: Jia Y,Tian H,Zhang S,Ding Z,Ma C

    更新日期:2019-10-01 00:00:00

  • Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2.

    abstract::Elucidation of the molecular basis of gene-for-gene interactions between disease-resistance (R) genes and pathogen avirulence (avr) genes has been a Holy Grail of plant pathology for the past decade. Recent studies of the R-avr interaction between RRS1-R and popP2 by Laurent Deslandes et al. provide new insights and s...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2003.11.002

    authors: Lahaye T

    更新日期:2004-01-01 00:00:00