Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys.

Abstract:

:Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15, 0.5, 1.0, 1.5wt%; designated as ZSr41A, B, C, and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate, for the first time, the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ∼1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ∼1. Additionally, the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24h was not adversely affected by the degradation of the alloys. Importantly, neither culture media supplemented with up to 27.6mM Mg2+ ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast, the significantly higher, yet non-cytotoxic, Zn2+ ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly, analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface, most likely caused by either a high local alkalinity, change in surface topography, and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro, in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. STATEMENT OF SIGNIFICANCE:Magnesium (Mg) alloys specifically designed for biodegradable implant applications have been the focus of biomedical research since the early 2000s. Physicochemical properties of Mg alloys make these metallic biomaterials excellent candidates for temporary biodegradable implants in orthopedic and cardiovascular applications. As Mg alloys continue to be investigated for biomedical applications, it is necessary to understand whether Mg-based materials or the alloying elements have the intrinsic ability to direct an immune response to improve implant integration while avoiding cell-biomaterial interactions leading to chronic inflammation and/or foreign body reactions. The present study utilized the direct culture method to investigate for the first time the in vitro transient inflammatory activation of endothelial cells induced by the degradation products of Zn-containing Mg alloys.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Cipriano AF,Sallee A,Tayoba M,Cortez Alcaraz MC,Lin A,Guan RG,Zhao ZY,Liu H

doi

10.1016/j.actbio.2016.10.020

subject

Has Abstract

pub_date

2017-01-15 00:00:00

pages

499-520

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(16)30547-5

journal_volume

48

pub_type

杂志文章
  • Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization.

    abstract::Surface functionalization of teeth with fluoride-incorporated apatite layers displays great potential in treatments and prevention of dental disorders. In this study, we used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.08.025

    authors: Joseph Nathanael A,Oyane A,Nakamura M,Mahanti M,Koga K,Shitomi K,Miyaji H

    更新日期:2018-10-01 00:00:00

  • Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study.

    abstract::This study characterizes the cross-linking of electrospun elastin and the mechanical properties of suture-reinforced 1.5mm internal diameter electrospun tubes composed of blended polydioxanone (PDO) and soluble elastin. Several tube configurations were tested to assess the effects of reinforcement on tube mechanical p...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.08.001

    authors: Smith MJ,McClure MJ,Sell SA,Barnes CP,Walpoth BH,Simpson DG,Bowlin GL

    更新日期:2008-01-01 00:00:00

  • A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc.

    abstract::Tissue-engineered temporomandibular joint (TMJ) discs offer a viable treatment option for patients with severe joint internal derangement. To date, only a handful of TMJ tissue engineering studies have been carried out and all have incorporated the use of synthetic scaffold materials. These current scaffolds have show...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.01.016

    authors: Lumpkins SB,Pierre N,McFetridge PS

    更新日期:2008-07-01 00:00:00

  • Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold.

    abstract::Scaffolds for tissue engineering and regenerative medicine are usually subjected to different mechanical loads during in vitro and in vivo degradation. In this study, the in vitro degradation process of electrospun poly(L-lactide-co-glycolide) (PLGA) scaffolds was examined under continuous tensile load and compared wi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.02.023

    authors: Li P,Feng X,Jia X,Fan Y

    更新日期:2010-08-01 00:00:00

  • Cathodic voltage-controlled electrical stimulation of titanium for prevention of methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii biofilm infections.

    abstract::Antibiotic resistance of bacterial biofilms limits available treatment methods for implant-associated orthopaedic infections. This study evaluated the effects of applying cathodic voltage-controlled electrical stimulations (CVCES) of -1.5V and -1.8V (vs. Ag/AgCl) to coupons of commercially pure titanium (cpTi) incubat...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.11.056

    authors: Canty M,Luke-Marshall N,Campagnari A,Ehrensberger M

    更新日期:2017-01-15 00:00:00

  • Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs.

    abstract::Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer and inform development of the envisaged...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.09.014

    authors: Garcia JP,Longoni A,Gawlitta D,J W P Rosenberg A,Grinstaff MW,Töyräs J,Weinans H,Creemers LB,Pouran B

    更新日期:2019-12-01 00:00:00

  • On the gular sac tissue of the brown pelican: Structural characterization and mechanical properties.

    abstract::The brown pelican (Pelecanus occidentalis) wields one of the largest bills of any bird and is distinguished by the deployable throat pouch of extensible tissue used to capture prey. Here we report on mechanical properties and microstructure of the pouch skin. It exhibits significant anisotropy, with the transverse dir...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.10.008

    authors: Dike S,Yang W,Pissarenko A,Quan H,Garcia Filho FC,Ritchie RO,Meyers MA

    更新日期:2020-12-01 00:00:00

  • A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.

    abstract:UNLABELLED:Cellular microenvironments present cells with multiple stimuli, including not only soluble biochemical and insoluble matrix cues but also mechanical factors. Biomaterial array platforms have been used to combinatorially and efficiently probe and define two-dimensional (2D) and 3D microenvironmental cues to g...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.11.054

    authors: Liu H,Usprech J,Sun Y,Simmons CA

    更新日期:2016-04-01 00:00:00

  • Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies.

    abstract::Bone morphogenetic protein-2 (BMP-2) involved therapy is of great potential for bone regeneration. However, its clinical application is restricted due to the undesirable bioactivity and relevant complications in vivo. Immobilization of recombinant BMP-2 (rhBMP-2) is an efficient strategy to mimic natural microenvironm...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.09.011

    authors: Chen R,Yu Y,Zhang W,Pan Y,Wang J,Xiao Y,Liu C

    更新日期:2018-10-15 00:00:00

  • Inhibition of LPS-induced proinflammatory responses of J774.2 macrophages by immobilized enzymatically tailored pectins.

    abstract::The surface of an implant device can be modified by immobilizing biological molecules on it to improve its integration into the host tissue. We have previously demonstrated that enzymatically tailored plant pectins are promising nanocoatings for biomaterials. This study investigates whether a coating of modified hairy...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.03.031

    authors: Gallet M,Vayssade M,Morra M,Verhoef R,Perrone S,Cascardo G,Vigneron P,Schols HA,Nagel MD

    更新日期:2009-09-01 00:00:00

  • Evaluation of composition and crosslinking effects on collagen-based composite constructs.

    abstract::Vascular grafts are widely used for a number of medical treatments. Strength, compliance, endothelialization and availability are issues of most concern for vascular graft materials. With current approaches, these requirements are difficult to satisfy simultaneously. To explore an alternative approach, the present stu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.09.028

    authors: Madhavan K,Belchenko D,Motta A,Tan W

    更新日期:2010-04-01 00:00:00

  • Self-assembled amphiphile-based nanoparticles for the inhibition of hepatocellular carcinoma metastasis via ICAM-1 mediated cell adhesion.

    abstract::Nanosized drug delivery systems have emerged to improve the therapeutic performance of anticancer drugs. Here, an amphiphile-based nanoparticle consisting of amphiphilic prodrug N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine was developed (UP12 NPs) with uniform sizes (~100 nm), which possessed the advantage...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.04.050

    authors: Zhao RR,Fang YF,Chen ZX,Le JQ,Jiang LG,Shao JW

    更新日期:2020-07-15 00:00:00

  • Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing.

    abstract::Chitosan-poly(ethylene glycol)-tyramine (CPT) hydrogels were rapidly formed in situ using horseradish peroxidase and hydrogen peroxide to explore their performance as efficient tissue adhesives. A poly(ethylene glycol) modified with tyramine was grafted onto a chitosan backbone to enhance the solubility of the chitosa...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.05.001

    authors: Lih E,Lee JS,Park KM,Park KD

    更新日期:2012-09-01 00:00:00

  • Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs.

    abstract::Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the rei...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.02.041

    authors: Boere KW,Visser J,Seyednejad H,Rahimian S,Gawlitta D,van Steenbergen MJ,Dhert WJ,Hennink WE,Vermonden T,Malda J

    更新日期:2014-06-01 00:00:00

  • Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters.

    abstract::Human pluripotent stem cells (hPSCs) represent a promising cell source for the development of β-cells for use in therapies for type 1 diabetes. Current culture approaches provide signals to mimic a temporal control of organogenesis to drive the differentiation towards β-cells. However, spatial control may represent an...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.06.032

    authors: Youngblood RL,Sampson JP,Lebioda KR,Shea LD

    更新日期:2019-09-15 00:00:00

  • Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth.

    abstract::The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schw...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.10.008

    authors: Romano NH,Madl CM,Heilshorn SC

    更新日期:2015-01-01 00:00:00

  • pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy.

    abstract::Heat-treated cancer cells have thermo-resistance due to the up-regulated levels of heat shock proteins (HSP) resulting in low therapeutic efficiency and ineffective ablation of tumors. In this work, we report pH-responsive Ag2S nanodots (Ag2S NDs) loaded with HSP70 inhibitor (QE-PEG-Ag2S) for enhanced photothermal can...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.08.007

    authors: Zhong Y,Zou Y,Liu L,Li R,Xue F,Yi T

    更新日期:2020-10-01 00:00:00

  • Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity.

    abstract::In this study, the Cu-doping mechanism of Biphasic Calcium Phosphate (BCP) was thoroughly investigated, as was its ionic release behavior, in order to elucidate cytotoxicity features of these bioceramics. BCP are composed of hydroxyapatite (Ca10(PO4)6(OH)2) and β-TCP (Ca3(PO4)2). The two phases present two different d...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.10.028

    authors: Gomes S,Vichery C,Descamps S,Martinez H,Kaur A,Jacobs A,Nedelec JM,Renaudin G

    更新日期:2018-01-01 00:00:00

  • Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.

    abstract::Highly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperatu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.03.020

    authors: Yook SW,Jung HD,Park CH,Shin KH,Koh YH,Estrin Y,Kim HE

    更新日期:2012-07-01 00:00:00

  • Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: a recent update on lung, breast and prostate cancer models.

    abstract::The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scena...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2021.01.023

    authors: Costard LS,Hosn RR,Ramanayake H,O'Briena B C FJ,Curtin CM

    更新日期:2021-01-20 00:00:00

  • Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields.

    abstract::Tilapia fish-scale type I atelocollagen hydrogels with aligned fibril structures were fabricated under a strong magnetic field of 6 or 12 T using two different methods. In the first method, a solution of acid-soluble collagen was neutralized with phosphate buffer saline and maintained in the magnetic field at 28°C for...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.09.014

    authors: Chen S,Hirota N,Okuda M,Takeguchi M,Kobayashi H,Hanagata N,Ikoma T

    更新日期:2011-02-01 00:00:00

  • Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model.

    abstract::Mast cells (MCs)_are recognized for their functional role in wound-healing and allergic and inflammatory responses - host responses that are frequently detrimental to implanted biomaterials if extended beyond acute reactivity. These tissue reactions impact especially on the performance of sensing implants such as cont...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.12.056

    authors: Avula MN,Rao AN,McGill LD,Grainger DW,Solzbacher F

    更新日期:2014-05-01 00:00:00

  • New findings confirm the viscoelastic behaviour of the inter-lamellar matrix of the disc annulus fibrosus in radial and circumferential directions of loading.

    abstract::While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM), its clinical relevance is not fully understood. Moreover, no studies have measured the direct tensile and shear failure and viscoelastic properties of the ILM. Therefore, the aim of t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.03.015

    authors: Tavakoli J,Costi JJ

    更新日期:2018-04-15 00:00:00

  • Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity.

    abstract::In this study the friction, wear and surface mechanical behavior of medical-grade ultra-high molecular weight polyethylene (UHMWPE) (GUR 1050 resin) were evaluated as a function of polymer crystallinity. Crystallinity was controlled by heating UHMWPE to a temperature above its melting point and varying the hold time a...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.02.022

    authors: Kanaga Karuppiah KS,Bruck AL,Sundararajan S,Wang J,Lin Z,Xu ZH,Li X

    更新日期:2008-09-01 00:00:00

  • Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration.

    abstract::Over the past decades, numerous tissue-engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate the functionalized calcified layer. In this study, the potential of icariin (Ica) conjugated hyaluronic acid/collagen (Ica-HA/Col) hydrogel to promote th...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.05.005

    authors: Yang J,Liu Y,He L,Wang Q,Wang L,Yuan T,Xiao Y,Fan Y,Zhang X

    更新日期:2018-07-01 00:00:00

  • The effects of pulsed electromagnetic field on the functions of osteoblasts on implant surfaces with different topographies.

    abstract::The use of pulsed electromagnetic fields (PEMFs) is a promising approach to promote osteogenesis. However, few studies have reported the effects of this technique on the osseointegration of endosseous implants, especially with regard to different implant topographies. We focused on how the initial interaction between ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.10.008

    authors: Wang J,An Y,Li F,Li D,Jing D,Guo T,Luo E,Ma C

    更新日期:2014-02-01 00:00:00

  • Immobilization of glycoproteins, such as VEGF, on biodegradable substrates.

    abstract::Attachment of growth factors to biodegradable polymers, such as poly(lactide-co-glycolide) (PLGA), may enhance and/or accelerate integration of tissue engineering scaffolds. Although proteins are commonly bound via abundant amino groups, a more selective approach may increase bioactivity of immobilized molecules. In t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.02.017

    authors: Sharon JL,Puleo DA

    更新日期:2008-07-01 00:00:00

  • bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis.

    abstract::Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable arch...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.12.008

    authors: Montero RB,Vial X,Nguyen DT,Farhand S,Reardon M,Pham SM,Tsechpenakis G,Andreopoulos FM

    更新日期:2012-05-01 00:00:00

  • Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research.

    abstract::The pathology of multiple sclerosis (MS) is typified by focal demyelinated areas of the brain and spinal cord, which results in axonal degeneration and atrophy. Although the field has made much progress in developing immunomodulatory therapies to reduce the occurrence of these focal lesions, there is a conspicuous lac...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.08.030

    authors: Eigel D,Zoupi L,Sekizar S,Welzel PB,Werner C,Williams A,Newland B

    更新日期:2019-10-01 00:00:00

  • Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo.

    abstract::Poly(ether ether ketone) (PEEK) and its composites are recognized as alternative bearing materials for use in arthroplasty because of their mechanical properties. The objective of this project was to evaluate the biological response of two different kinds of carbon fiber-reinforced (CFR) PEEK compared with ultra-high ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.06.002

    authors: Utzschneider S,Becker F,Grupp TM,Sievers B,Paulus A,Gottschalk O,Jansson V

    更新日期:2010-11-01 00:00:00